Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
elasticity_taylor_dg.cc

The elasticity problem with the Taylor benchmark and discontinuous Galerkin method.

The elasticity problem with the Taylor benchmark and discontinuous Galerkin method

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "taylor.h"
int main(int argc, char**argv) {
environment rheolef (argc, argv);
geo omega (argv[1]);
space Xh (omega, argv[2], "vector");
Float lambda = (argc > 3) ? atof(argv[3]) : 1;
size_t d = omega.dimension();
size_t k = Xh.degree();
Float beta = (k+1)*(k+d)/Float(d);
trial u (Xh); test v (Xh);
form a = integrate (lambda*div_h(u)*div_h(v) + 2*ddot(Dh(u),Dh(v)))
+ integrate (omega.sides(),
beta*penalty()*dot(jump(u),jump(v))
- lambda*dot(jump(u),average(div_h(v)*normal()))
- lambda*dot(jump(v),average(div_h(u)*normal()))
- 2*dot(jump(u),average(Dh(v)*normal()))
- 2*dot(jump(v),average(Dh(u)*normal())));
field lh = integrate (dot(f(),v))
+ integrate (omega.boundary(),
beta*penalty()*dot(g(),jump(v))
- lambda*dot(g(),average(div_h(v)*normal()))
- 2*dot(g(),average(Dh(v)*normal())));
field uh(Xh);
problem p (a);
p.solve (lh, uh);
dout << uh;
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
int main()
Definition field2bb.cc:58
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
Definition cavity_dg.h:29
Definition cavity_dg.h:25
Definition sphere.icc:25
Definition leveque.h:25
The Taylor benchmark – right-hand-side and boundary condition.