The yield slip problem on a circle – error computation.
int main(
int argc,
char**argv) {
Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
const geo& omega = uh.get_geo();
geo boundary = omega[
"boundary"];
const space& Xh = uh.get_space();
field pi_h_u = lazy_interpolate (Xh,
u(S,n,Cf));
Float err_linf = eh.max_abs();
Float err_l2 = sqrt(integrate (omega, sqr(uh -
u(S,n,Cf)), iopt));
Float err_h1 = sqrt(integrate (omega, norm2(grad(uh) -
grad_u(S,n,Cf)), iopt));
Float err_b = sqrt(integrate (boundary, sqr(uh[boundary] -
u(S,n,Cf)), iopt));
Float err_lb = sqrt(integrate (boundary, sqr(lambda_h -
lambda(S,n,Cf)), iopt));
dout << "err_linf = " << err_linf << endl
<< "err_l2 = " << err_l2 << endl
<< "err_h1 = " << err_h1 << endl
<< "err_b = " << err_b << endl
<< "err_lb = " << err_lb << endl;
return (err_linf < tol) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
This file is part of Rheolef.
rheolef - reference manual
The yield slip problem on a circle – exact solution.