The hybrid high order method – reconstruction operator.
int main(
int argc,
char**argv) {
string Pkd = (argc > 2) ? argv[2] : "P0",
Pld = (argc > 3) ? argv[3] : Pkd;
Mh (omega["sides"], Pkd);
size_t l = Xh.degree(), k = Xh.degree(),
d = omega.dimension();
"invalid (k,l) = ("<<k<<","<<l<<")");
space Xhs(omega,
"P"+to_string(k+1)+
"d"),
Zh (omega, "P0");
test v(Xh), mu (Mh), vs(Xhs), xi (Zh);
auto as = lazy_integrate (dot(grad_h(us),
A(
d)*grad_h(vs)));
auto bs = lazy_integrate (us*xi);
auto cs = lazy_integrate (pow(h_local(),2)*zeta*xi);
auto m = lazy_integrate (
u*v);
auto inv_cs = inv(cs);
auto inv_m = inv(m);
auto inv_S = inv(as + trans(bs)*inv_cs*bs);
auto llh = lazy_integrate (
u_exact(
d)*v);
field pi_Xh_u = inv_m*llh;
pms.solve (rhs, pi_Mh_lambda);
field lh = lazy_integrate (dot(grad_h(pi_Xh_u),
A(
d)*grad_h(vs))
+ on_local_sides((pi_Mh_lambda-pi_Xh_u)
*dot(normal(),
A(
d)*grad_h(vs))));
auto kh = lazy_integrate (pi_Xh_u*xi);
auto rh =
lh + bs.trans_mult(inv_cs*kh);
field zeta_h = inv_cs*(bs*us_h - kh);
}
field lh(Float epsilon, Float t, const test &v)
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
Tensor diffusion – isotropic case.
check_macro(expr1.have_homogeneous_space(Xh1), "dual(expr1,expr2); expr1 should have homogeneous space. HINT: use dual(interpolate(Xh, expr1),expr2)")
This file is part of Rheolef.
rheolef - reference manual
The sinus product function.