The diffusive Burgers equation – error analysis.
int main(
int argc,
char**argv) {
Float err_expected = (argc > 1) ? atof(argv[1]) : 1;
err_l2_l2 = 0,
err_linf_linf = 0,
meas_omega = 0;
size_t n = 0;
bool have_meas_omega = false;
dout << "# t err_l2(t) err_linf(t)" << endl;
while (din >> even(t,uh)) {
const geo& omega = uh.get_geo();
if (!have_meas_omega) {
meas_omega = integrate(omega);
have_meas_omega = true;
}
iopt.
set_order (2*uh.get_space().degree()+1);
err_linf_linf = max(err_linf_linf, err_linf);
err_linf_l2 = max(err_linf_l2, err_l2);
err_l2_l2 += sqr(err_l2);
dout << t << " " << err_l2 << " " << err_linf << endl;
++n;
}
err_l2_l2 = sqrt(err_l2_l2/n);
dout << "# err_l2_l2 = " << err_l2_l2 << endl
<< "# err_linf_l2 = " << err_linf_l2 << endl
<< "# err_linf_linf = " << err_linf_linf << endl;
return (err_linf_l2 <= err_expected) ? 0 : 1;
}
The diffusive Burgers equation – its exact solution.
see the Float page for the full documentation
see the branch page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
This file is part of Rheolef.
rheolef - reference manual