Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
stokes_dirichlet_dg.icc

The Stokes problem with Dirichlet boundary condition by the discontinuous Galerkin method – solver function.

The Stokes problem with Dirichlet boundary condition by the discontinuous Galerkin method – solver function

void stokes_dirichlet_dg (const space& Xh, const space& Qh,
form& a, form& b, form& c, form& mp, field& lh, field& kh,
integrate_option iopt = integrate_option())
{
size_t k = Xh.degree();
size_t d = Xh.get_geo().dimension();
Float beta = (k+1)*(k+d)/Float(d);
trial u (Xh), p (Qh);
test v (Xh), q (Qh);
a = integrate (2*ddot(Dh(u),Dh(v)), iopt)
+ integrate ("sides", beta*penalty()*dot(jump(u),jump(v))
- 2*dot(jump(u),average(Dh(v)*normal()))
- 2*dot(jump(v),average(Dh(u)*normal())), iopt);
lh = integrate (dot(f(),v), iopt)
+ integrate ("boundary", beta*penalty()*dot(g(),v)
- 2*dot(g(),Dh(v)*normal()), iopt);
b = integrate (dot(u,grad_h(q)), iopt)
+ integrate ("internal_sides", - dot(average(u),normal())*jump(q), iopt);
kh = integrate ("boundary", dot(g(),normal())*q, iopt);
c = integrate ("internal_sides", h_local()*jump(p)*jump(q), iopt);
mp = integrate (p*q, iopt);
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
void stokes_dirichlet_dg(const space &Xh, const space &Qh, form &a, form &b, form &c, form &mp, field &lh, field &kh, integrate_option iopt=integrate_option())
Definition cavity_dg.h:29
Definition cavity_dg.h:25
Definition sphere.icc:25
Definition leveque.h:25