The Poisson problem by the discontinuous Galerkin method.
The Poisson problem by the discontinuous Galerkin method
int main(
int argc,
char**argv) {
space Xh (omega, argv[2]);
size_t d = omega.dimension();
size_t k = Xh.degree();
form a = integrate (dot(grad_h(
u),grad_h(v)))
+ integrate (
"sides", beta*penalty()*jump(
u)*jump(v)
- jump(
u)*average(dot(grad_h(v),normal()))
- jump(v)*average(dot(grad_h(
u),normal())));
+ integrate (
"boundary", beta*penalty()*
g(
d)*v
-
g(
d)*dot(grad_h(v),normal()));
a.uu().set_definite_positive(true);
dout << uh;
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The cosinus product function – right-hand-side and boundary condition for the Laplace problem.
This file is part of Rheolef.
rheolef - reference manual