The Poisson problem with Neumann boundary conditions.
int main(
int argc,
char**argv) {
space Xh (omega, argv[2]);
field Uh (Bh.get_space(), 0);
dout << Uh[0];
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the point page for the full documentation
see the problem page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
rheolef::details::is_vec dot
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
csr< T, sequential > trans(const csr< T, sequential > &a)
trans(a): see the form page for the full documentation
rheolef - reference manual