Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
cosinusprod_post_dg.cc

The cosinus product function – post-treatment with the discontinuous Galerkin method.

The cosinus product function – post-treatment with the discontinuous Galerkin method

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "cosinusprod.h"
int main(int argc, char**argv) {
environment rheolef(argc, argv);
field uh; din >> uh;
space Xh = uh.get_space();
geo omega = Xh.get_geo();
size_t k = Xh.degree();
size_t d = omega.dimension();
space Vh (omega, "P"+to_string(k));
Vh.block("boundary");
space Wh (omega["boundary"], "P"+to_string(k));
test u (Vh); trial v (Vh);
fopt.lump = true;
fopt.set_family(integrate_option::gauss_lobatto);
fopt.set_order(k);
form m = integrate (u*v, fopt);
field lh = integrate (uh*v, fopt);
field uh_star (Vh, 0);
uh_star ["boundary"] = lazy_interpolate(Wh, u_exact(d));
problem pm (m);
pm.solve (lh, uh_star);
iopt.set_family(integrate_option::gauss);
iopt.set_order(2*k+1);
space Xh1 (omega, "P"+to_string(k+1)+"d");
field eh = lazy_interpolate (Xh1, uh-u_exact(d));
field eh_star = lazy_interpolate (Xh1, uh_star-u_exact(d));
field eta_h = eh_star - eh;
Float err_linf = eh.max_abs();
Float err_star_linf = eh_star.max_abs();
Float eta_linf = eta_h.max_abs();
Float err_l2 = sqrt(integrate (omega, sqr(uh-u_exact(d)), iopt));
Float err_star_l2 = sqrt(integrate (omega, sqr(uh_star-u_exact(d)), iopt));
Float eta_l2 = sqrt(integrate (omega, sqr(eta_h), iopt));
Float err_h1 = sqrt(integrate (omega, norm2(grad_h(uh)-grad_u(d)), iopt));
Float err_star_h1 = sqrt(integrate (omega, norm2(grad(uh_star)-grad_u(d)), iopt));
Float eta_h1 = sqrt(integrate (omega, norm2(grad_h(eta_h)), iopt));
// gradient as P0
space G0h (omega, "P0", "vector");
field grad_eh = lazy_interpolate (G0h, grad_h(eh));
field grad_eta_h = lazy_interpolate (G0h, grad_h(eta_h));
// proj gradient as P1
space G1h (omega, "P1", "vector");
G1h.block("boundary");
test uu (G1h); trial vv (G1h);
form m1v = integrate(dot(uu,vv), fopt);
field l1h = integrate (dot(grad_eh,vv));
field grad_eh_p1 (G1h, 0);
problem pm1v (m1v);
pm1v.solve(l1h, grad_eh_p1);
field l2h = integrate (dot(grad_eta_h,vv));
field grad_eta_h_p1 (G1h, 0);
pm1v.solve(l2h, grad_eta_h_p1);
// calcul de s_eta_h = sqrt(int_K eta_h^2 dx) : P0
space X0h (omega, "P0");
test v0 (X0h);
field s_eta_h2 = integrate (sqr(eta_h)*v0);
field s_eta_h = lazy_interpolate (X0h, sqrt(s_eta_h2));
field s_eh2 = integrate (sqr(uh-u_exact(d))*v0);
field s_eh = lazy_interpolate (X0h, sqrt(s_eh2));
derr << "err_l2 = " << err_l2 << endl
<< "eta_l2 = " << eta_l2 << endl
<< "err_star_l2 = " << err_star_l2 << endl
<< "err_linf = " << err_linf << endl
<< "eta_linf = " << eta_linf << endl
<< "err_star_linf = " << err_star_linf << endl
<< "err_h1 = " << err_h1 << endl
<< "eta_h1 = " << eta_h1 << endl
<< "err_star_h1 = " << err_star_h1 << endl;
dout << catchmark ("grad_eta_h") << grad_eta_h_p1
<< catchmark ("grad_eh") << grad_eh_p1
<< catchmark ("eta_h") << eta_h
<< catchmark ("eh") << eh
<< catchmark ("uh") << uh
<< catchmark ("uh_star") << uh_star
<< catchmark ("s_eta_h") << s_eta_h
<< catchmark ("s_eh") << s_eh
;
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The cosinus product function.
The cosinus product function – its gradient.
int main()
Definition field2bb.cc:58
space_basic< T, M > Xh1
Definition field_expr.h:232
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
Definition leveque.h:25