Rheolef
7.2
an efficient C++ finite element environment
Loading...
Searching...
No Matches
oldroyd_theta_scheme1.h
Go to the documentation of this file.
1
25
template
<
class
P>
26
oldroyd_theta_scheme<P>::oldroyd_theta_scheme
()
27
: We(0), alpha(8./9), a(1), Re(1), delta_t(0.025), tol(1e-6), max_iter(500),
28
Th(), Xh(), Qh(), b(), c(),
d
(), mt(), inv_mt(), mu(), mp(), th(), thb(),
29
theta(),
lambda
(),
eta
(),
nu
(), c1(), c2(), c3(), c4(), c5(), stokes() {}
30
template
<
class
P>
31
void
oldroyd_theta_scheme<P>::reset
(
const
geo
& omega) {
32
Th =
space
(omega,
"P1d"
,
"tensor"
);
33
Xh = P::velocity_space (omega,
"P2"
);
34
Qh =
space
(omega,
"P1d"
);
35
theta = 1-1/sqrt(2.);
36
lambda
= Re/(theta*delta_t);
37
eta
= ((1 - alpha)*We + theta*delta_t)/(We + theta*delta_t);
38
nu
= 1/((1-2*theta)*delta_t);
39
c1 = We/(We + theta*delta_t);
40
c2 = - We*theta*delta_t/(We + theta*delta_t);
41
c3 = alpha*theta*delta_t/(We + theta*delta_t);
42
c4 = 1/((1-2*theta)*delta_t) - 1/We;
43
c5 = alpha/We;
44
trial
u
(Xh), tau(Th),
p
(Qh);
45
test
v (Xh), xi (Th), q (Qh);
46
mt = integrate (ddot(tau,xi));
47
mu = integrate (dot(
u
,v));
48
mp = integrate (
p
*q);
49
integrate_option iopt;
50
iopt.invert =
true
;
51
inv_mt = integrate (ddot(tau,xi), iopt);
52
b = integrate (-ddot(tau,D(v)));
53
c = integrate (
lambda
*dot(
u
,v) + 2*
eta
*ddot(D(
u
),D(v)));
54
d
= integrate (-div(
u
)*q);
55
stokes =
problem_mixed
(c,
d
);
56
stokes.set_metric (mp);
57
}
geo
see the geo page for the full documentation
problem_mixed
see the problem_mixed page for the full documentation
space
see the space page for the full documentation
test
see the test page for the full documentation
trial
see the test page for the full documentation
d
size_t d
Definition
neumann-laplace-lambda.cc:28
eta
Definition
eta.h:25
lambda
Definition
yield_slip_circle.h:34
nu
Definition
nu.h:26
oldroyd_theta_scheme::oldroyd_theta_scheme
oldroyd_theta_scheme()
Definition
oldroyd_theta_scheme1.h:26
oldroyd_theta_scheme::reset
void reset(const geo &omega)
Definition
oldroyd_theta_scheme1.h:31
p
Definition
sphere.icc:25
u
Definition
leveque.h:25