Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
eta.h

The p-Laplacian problem – the eta function.

The p-Laplacian problem – the eta function

struct eta {
Float operator() (const Float& z) const {
check_macro(z != 0 || p > 2, "eta: division by zero (HINT: check mesh)");
return pow(z, (p-2)/2);
}
Float derivative (const Float& z) const {
check_macro(z != 0 || p > 4, "eta': division by zero (HINT: check mesh)");
return 0.5*(p-2)*pow(z, (p-4)/2);
}
eta (const Float& q) : p(q) {}
};
see the Float page for the full documentation
check_macro(expr1.have_homogeneous_space(Xh1), "dual(expr1,expr2); expr1 should have homogeneous space. HINT: use dual(interpolate(Xh, expr1),expr2)")
Definition eta.h:25
Float derivative(const Float &z) const
Definition eta.h:30
Float operator()(const Float &z) const
Definition eta.h:26
Float p
Definition eta.h:35
Definition sphere.icc:25