The Poisson problem by the hybrid discontinuous Galerkin method – post-treatment with the Raviart-Thomas element.
The Poisson problem by the hybrid discontinuous Galerkin method – post-treatment with the Raviart-Thomas element
int main(
int argc,
char**argv) {
field sigma_h, uh, lambda_h;
const geo& omega = uh.get_geo();
size_t d = omega.dimension();
size_t k = uh.get_space().degree();
string approx = (k == 0) ? "empty" : "P"+to_string(k-1)+"d";
space Tht(omega,
"RT"+to_string(k)+
"d");
space Wht(omega, approx,
"vector");
space Mht(omega,
"trace_n(RT"+to_string(k)+
"d)");
auto tau_internal = tau[0], tau_n = tau[1];
auto coef = beta*pow(h_local(),n);
form aht = integrate (dot(sigma_t, tau_internal)
+ on_local_sides (dot(sigma_t,normal())*tau_n));
field lht = integrate(dot(sigma_h, tau_internal)
+ on_local_sides((dot(sigma_h,normal())
+ coef*(lambda_h - uh))*tau_n));
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
This file is part of Rheolef.
rheolef - reference manual