Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
oldroyd_theta_scheme2.h

The Oldroyd problem by the theta-scheme – class body.

The Oldroyd problem by the theta-scheme – class body

template <class P>
reset (uh.get_geo());
field tau_h0 = tau_h, uh0 = uh, ph0 = ph;
derr << "# n t rel_err residue lambda_min" << endl;
Float r = residue (tau_h, uh, ph);
Float rel_err = 0;
derr << "0 0 0 " << r << endl;
for (size_t n = 1; n <= max_iter; ++n) {
step (tau_h0, uh0, ph0, tau_h, uh, ph);
Float rel_err_prec = rel_err, r_prec = r;
r = residue (tau_h, uh, ph);
rel_err = field(tau_h-tau_h0).max_abs() + field(uh-uh0).max_abs();
derr << n << " " << n*delta_t << " " << rel_err << " " << r << endl;
if (rel_err < tol) return true;
if (rel_err_prec != 0 && ((rel_err > 10*rel_err_prec && r > 10*r_prec) ||
(rel_err > 1e5 && r > 1e5) )) return false;
tau_h0 = tau_h; uh0 = uh; ph0 = ph;
}
return (rel_err < sqrt(tol));
}
template <class P>
const geo& omega, field& tau_h, field& uh, field& ph, string restart) {
reset (omega);
ph = field(Qh,0);
if (restart == "") {
uh = P::velocity_field (Xh);
trial u (Xh); test v (Xh), xi(Th);
form c0 = integrate (2*ddot(D(u),D(v)));
problem_mixed s0 (c0, d);
s0.set_metric(mp);
s0.solve (field(Xh,0), field(Qh,0), uh, ph);
field Duh = inv_mt*integrate(ddot(D(uh),xi));
tau_h = 2*alpha*Duh;
} else {
tau_h = field(Th);
uh = field(Xh);
idiststream in (restart, "field");
in >> catchmark("tau") >> tau_h
>> catchmark("u") >> uh
>> catchmark("p") >> ph;
}
}
template <class P>
const field& tau_h0, const field& uh0, const field& ph0,
field& tau_h, field& uh, field& ph) const {
field tau_h1 = tau_h0, uh1 = uh0, ph1 = ph0;
sub_step1 (tau_h0, uh0, ph0, tau_h1, uh1, ph1);
field tau_h2 = tau_h1, uh2 = uh1;
sub_step2 (uh0, tau_h1, uh1, tau_h2, uh2);
sub_step1 (tau_h2, uh2, ph1, tau_h, uh, ph);
}
template <class P>
update_transport_stress (uh);
test xi (Th);
field Duh = inv_mt*integrate(ddot(D(uh),xi));
field gh = 2*Duh;
field rt = We*(th*tau_h-thb) + integrate (ddot(tau_h - alpha*gh, xi));
field ru = b*(tau_h + (1-alpha)*gh) - d.trans_mult(ph);
ru.set_b() = 0;
field rp = d*uh;
return rt.u().max_abs() + ru.u().max_abs() + rp.u().max_abs();
}
field gh(Float epsilon, Float t, const field &uh, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem_mixed page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
Float alpha[pmax+1][pmax+1]
Definition bdf.icc:28
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type D(const Expr &expr)
D(uh): see the expression page for the full documentation.
T ddot(const tensor_basic< T > &a, const tensor_basic< T > &b)
ddot(x,y): see the expression page for the full documentation
Definition tensor.cc:278
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition integrate.h:211
field residue(Float p, const field &uh)
bool solve(field &tau_h, field &uh, field &ph)
void initial(const geo &omega, field &tau_h, field &uh, field &ph, string restart)
Float residue(field &tau_h, field &uh, field &ph) const
void step(const field &tau_h0, const field &uh0, const field &ph0, field &tau_h, field &uh, field &ph) const
Definition leveque.h:25