Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
cosinusrad_error.cc

The cosinus product function – error analysis for the Poisson problem.

The cosinus product function – error analysis for the Poisson problem

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "cosinusrad.h"
int main(int argc, char**argv) {
environment rheolef(argc, argv);
Float err_u_linf_expected = (argc > 1) ? atof(argv[1]) : 1e+38;
field uh; din >> uh;
geo omega = uh.get_geo();
space Xh = uh.get_space();
size_t k = Xh.degree();
size_t d = Xh.get_geo().dimension();
iopt.set_order(min(3*(k+1)+4,size_t(17)));
Float err_u_l2 = sqrt(integrate (omega, sqr(uh-u_exact(d)), iopt));
string opts = Xh.get_basis().option().stamp();
space Xh1 (omega, "P"+to_string(k+1)+"d"+opts);
field euh = lazy_interpolate (Xh1, uh-u_exact(d));
Float err_u_linf = euh.max_abs();
Float err_u_h1 = sqrt(integrate (omega, norm2(grad_h(euh)), iopt));
dout << "err_u_l2 " << err_u_l2 << endl
<< "err_u_linf " << err_u_linf << endl
<< "err_u_h1 " << err_u_h1 << endl;
return (err_u_linf <= err_u_linf_expected) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
see the space page for the full documentation
The cosinus radius function.
int main()
Definition field2bb.cc:58
space_basic< T, M > Xh1
Definition field_expr.h:232
This file is part of Rheolef.
STL namespace.
rheolef - reference manual