Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
yield_slip_error.cc

The yield slip problem on a circle – error computation.

The yield slip problem on a circle – error computation

#include "rheolef.h"
using namespace rheolef;
using namespace std;
int main(int argc, char**argv) {
environment rheolef (argc,argv);
Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
Float S, n, Cf;
field uh, lambda_h;
din >> catchmark("S") >> S
>> catchmark("n") >> n
>> catchmark("Cf") >> Cf
>> catchmark("u") >> uh
>> catchmark("lambda") >> lambda_h;
const geo& omega = uh.get_geo();
geo boundary = omega["boundary"];
const space& Xh = uh.get_space();
field pi_h_u = lazy_interpolate (Xh, u(S,n,Cf));
field eh = pi_h_u - uh;
iopt.set_family(integrate_option::gauss);
iopt.set_order(3*Xh.degree());
Float err_linf = eh.max_abs();
Float err_l2 = sqrt(integrate (omega, sqr(uh - u(S,n,Cf)), iopt));
Float err_h1 = sqrt(integrate (omega, norm2(grad(uh) - grad_u(S,n,Cf)), iopt));
Float err_b = sqrt(integrate (boundary, sqr(uh[boundary] - u(S,n,Cf)), iopt));
Float err_lb = sqrt(integrate (boundary, sqr(lambda_h - lambda(S,n,Cf)), iopt));
dout << "err_linf = " << err_linf << endl
<< "err_l2 = " << err_l2 << endl
<< "err_h1 = " << err_h1 << endl
<< "err_b = " << err_b << endl
<< "err_lb = " << err_lb << endl;
return (err_linf < tol) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
int main()
Definition field2bb.cc:58
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
Definition leveque.h:25
The yield slip problem on a circle – exact solution.