Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
burgers_diffusion_error.cc

The diffusive Burgers equation – error analysis.

The diffusive Burgers equation – error analysis

#include "rheolef.h"
using namespace rheolef;
using namespace std;
int main(int argc, char**argv) {
environment rheolef (argc, argv);
Float err_expected = (argc > 1) ? atof(argv[1]) : 1;
din >> catchmark("epsilon") >> epsilon;
branch even("t","u");
Float t=0; field uh;
Float err_linf_l2 = 0,
err_l2_l2 = 0,
err_linf_linf = 0,
meas_omega = 0;
size_t n = 0;
bool have_meas_omega = false;
dout << "# t err_l2(t) err_linf(t)" << endl;
while (din >> even(t,uh)) {
const geo& omega = uh.get_geo();
if (!have_meas_omega) {
meas_omega = integrate(omega);
have_meas_omega = true;
}
iopt.set_order (2*uh.get_space().degree()+1);
field pi_h_u = lazy_interpolate (uh.get_space(), u_exact(epsilon,t));
Float err_linf = field(uh - pi_h_u).max_abs();
Float err_l2 = sqrt(integrate (omega, sqr(uh - u_exact(epsilon,t)), iopt)/meas_omega);
err_linf_linf = max(err_linf_linf, err_linf);
err_linf_l2 = max(err_linf_l2, err_l2);
err_l2_l2 += sqr(err_l2);
dout << t << " " << err_l2 << " " << err_linf << endl;
++n;
}
err_l2_l2 = sqrt(err_l2_l2/n);
dout << "# err_l2_l2 = " << err_l2_l2 << endl
<< "# err_linf_l2 = " << err_linf_l2 << endl
<< "# err_linf_linf = " << err_linf_linf << endl;
return (err_linf_l2 <= err_expected) ? 0 : 1;
}
The diffusive Burgers equation – its exact solution.
see the Float page for the full documentation
see the branch page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
see the integrate_option page for the full documentation
int main()
Definition field2bb.cc:58
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
Float epsilon