The yield slip problem – residue computation.
int main(
int argc,
char**argv) {
Float tol = (argc > 1) ? atof(argv[1]) : 1e-12;
bool sym = (argc > 2) && (string(argv[2]) == "-symmetric") ? true : false;
space Xh = uh.get_space();
space Wh = lambda_h.get_space();
geo omega = Xh.get_geo();
geo boundary = omega[
"boundary"];
form m = integrate (
u*v),
a = integrate (dot(grad(
u),grad(v))),
b = integrate (boundary,
u*mu);
if (!sym) {
r_lambda_h = lazy_interpolate(Wh,
uh[
"boundary"] - compose(
projection(S,n,Cf), lambda_h));
} else {
field beta_h = lambda_h + r*uh[boundary];
field mr_lambda_h = b*uh - integrate(mu*compose(
projection(S,n,Cf,r), beta_h));
pmb.solve (mr_lambda_h, r_lambda_h);
}
field mruh = a*uh -
lh + b.trans_mult(lambda_h);
pm.solve (mruh, ruh);
ruh["boundary"] = 0;
Float residue_u = sqrt(dual(mruh,ruh));
Float residue_lambda = sqrt(mb(r_lambda_h, r_lambda_h));
dout << "residue_u = " << residue_u << endl
<< "residue_lambda = " << residue_lambda << endl;
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
This file is part of Rheolef.
field residue(Float p, const field &uh)
The projection for yield-stress rheologies e.g. the yield slip problem.
rheolef - reference manual