30int main(
int argc,
char**argv) {
33 field uh, lambda_h, sigma_h;
40 const geo& omega = uh.get_geo();
41 size_t d = omega.dimension();
42 size_t k = uh.get_space().degree();
43 space Xhs (omega,
"P"+to_string(k+1)+
"d"),
47 auto us = x[0], zeta = x[1];
48 auto vs = y[0], xi = y[1];
54 field xhs = inv_ahs*lhs;
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The Poisson problem by the hybrid discontinuous Galerkin method – local averaging function.
field dirichlet_hdg_average(field uh, field lambda_h)
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::normal_pseudo_function< Float > > normal()
normal: see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
std::enable_if< details::is_field_expr_v2_variational_arg< Expr >::value, details::field_expr_quadrature_on_sides< Expr > >::type on_local_sides(const Expr &expr)
on_local_sides(expr): see the expression page for the full documentation
rheolef::std enable_if ::type dot const Expr1 expr1, const Expr2 expr2 dot(const Expr1 &expr1, const Expr2 &expr2)
rheolef - reference manual
The sinus product function – right-hand-side and boundary condition for the Poisson problem.