The sinus product function – error analysis for the hybrid discontinuous Galerkin method.
The sinus product function – error analysis for the hybrid discontinuous Galerkin method
int main(
int argc,
char**argv) {
Float err_linf_expected = (argc > 1) ? atof(argv[1]) : 1e+38;
bool with_u = (argc <= 2) || argv[2] != string("-us");
bool with_sigma = ((argc <= 2) || argv[2] != string("-no-sigma")) && with_u;
field uh, lambda_h, sigma_h;
if (with_u) {
} else {
}
if (with_sigma) {
}
space Xh = uh.get_space();
geo omega = Xh.get_geo();
size_t k = Xh.degree();
size_t d = omega.dimension();
Float err_u_l2 = sqrt(integrate (omega, sqr(uh-
u_exact(
d)), iopt));
string opts = Xh.get_basis().option().stamp();
space Xh1 (omega,
"P"+to_string(k+1)+
"d"+opts);
Float err_u_linf = euh.max_abs();
Float err_u_h1 = sqrt(integrate (omega, norm2(grad_h(euh)), iopt)
+ integrate (omega.sides(), (1/h_local())*sqr(jump(euh)), iopt));
derr << "err_u_l2 = " << err_u_l2 << endl
<< "err_u_linf = " << err_u_linf << endl
<< "err_u_h1 = " << err_u_h1 << endl;
if (with_sigma) {
Float err_sigma_l2 = sqrt(integrate (omega, norm2(sigma_h-
grad_u(
d)), iopt));
space Th1 (omega,
"P"+to_string(k+1)+
"d"+opts,
"vector");
Float err_sigma_linf = esh.max_abs();
derr << "err_sigma_l2 = " << err_sigma_l2 << endl
<< "err_sigma_linf = " << err_sigma_linf << endl;
}
if (!lambda_h.get_space().get_basis().option().is_trace_n()) {
space Mh = lambda_h.get_space();
pms.solve (kh, ph_lambda);
Float err_lambda_l2 = sqrt(integrate (omega[
"sides"], h_local()*sqr(lambda_h-ph_lambda), iopt));
derr << "err_lambda_l2 = " << err_lambda_l2 << endl;
}
return (err_u_linf <= err_linf_expected) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The cosinus product function.
The cosinus product function – its gradient.
This file is part of Rheolef.
rheolef - reference manual