The Mossolov problem by the augmented Lagrangian method – solver class body.
: Bi(0), n(1), r(1), tol(1e-10), max_iter(1000000),
Xh(), Th(),
lh(), a(), b(), inv_mt(), pa()
{}
string grad_approx =
"P" + to_string(
Xh.degree()-1) +
"d";
Th =
space (omega, grad_approx,
"vector");
a = integrate (dot(grad(
u),grad(v)));
b = integrate (dot(grad(
u),tau));
integrate_option iopt;
iopt.invert = true;
}
void
uh ["boundary"] = 0;
}
{
out << catchmark(
"Bi") <<
Bi << endl
<< catchmark(
"n") <<
n << endl
<< catchmark(
"r") <<
r << endl
<< catchmark("sigma") << sigma_h
<< catchmark("u") << uh;
}
field lh(Float epsilon, Float t, const test &v)
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
rheolef::details::is_vec dot
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
mosolov_augmented_lagrangian()
void reset(geo omega, string approx)
void put(odiststream &out, field &sigma_h, field &uh) const
void initial(field &sigma_h, field &uh) const