Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
yield_slip2.icc

The yield slip problem – class body.

The yield slip problem – class body

field mryh(Yh, 0.);
mryh[1] = -mrh;
field delta_yh(Yh);
pA.solve(mryh, delta_yh);
return delta_yh[1];
}
field rh (Wh);
pmb.solve (mrh, rh);
field rhs = b.trans_mult(rh);
field delta_vh (Xh, 0.);
pa.solve (rhs, delta_vh);
field mgh = b*delta_vh + c1*rh;
field gh (Wh);
pmb.solve (mgh, gh);
return gh;
}
Float yield_slip::space_norm (const field& rh) const {
return sqrt (mb(rh,rh));
}
field rh (Wh,0);
pmb.solve (mrh, rh);
return sqrt (dual (mrh,rh));
}
return (Cf+r)*uh["boundary"];
}
void yield_slip::post (const field& beta_h, field& uh, field& lambda_h) const {
field rhs = lh - b.trans_mult(beta_h);
uh = field (Xh, 0.);
pa.solve (rhs, uh);
lambda_h = beta_h - r*uh["boundary"];
}
field gh(Float epsilon, Float t, const field &uh, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
field derivative_trans_mult(const field &mrh) const
problem pa
Definition yield_slip.h:46
Float dual_space_norm(const field &) const
problem pA
Definition yield_slip.h:47
Float space_norm(const field &) const
field derivative_solve(const field &mrh) const
problem pmb
Definition yield_slip.h:46
field initial() const
void post(const field &beta_h, field &uh, field &lambda_h) const
The Poisson problem with Robin boundary condition – solver function.
field poisson_robin(Float Cf, const geo &boundary, const field &lh)