Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
laplace_s.cc

The Poisson problem on a surface.

The Poisson problem on a surface

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "torus.icc"
int main (int argc, char**argv) {
environment rheolef (argc, argv);
geo gamma (argv[1]);
size_t d = gamma.dimension();
space Wh (gamma, argv[2]);
trial u (Wh); test v (Wh);
form a = integrate (dot(grad_s(u),grad_s(v)));
field b = integrate(v);
field lh = integrate (f(d)*v);
form A = {{ a, b },
{ trans(b), 0 }};
field Bh = { lh, 0 };
field Uh (Bh.get_space(), 0);
A.set_symmetry(true);
problem pa (A);
pa.solve (Bh, Uh);
dout << Uh[0];
}
field lh(Float epsilon, Float t, const test &v)
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
int main()
Definition field2bb.cc:58
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
Definition cavity_dg.h:29
Definition leveque.h:25
The torus benchmark – level set, right-hand-side and exact solution.