The combustion problem by Keller continuation.
The combustion problem by Keller continuation
int main(
int argc,
char**argv) {
din >> noverbose;
string approx = (argc > 2) ? argv[2] : "P1";
string metric = (argc > 3) ? argv[3] : "orthogonal";
Float eps = numeric_limits<Float>::epsilon();
derr << setprecision(numeric_limits<Float>::digits10)
<< "# continuation in s:" << endl
<< "# geo = " << omega.name() << endl
<< "# approx = " << approx << endl
<< "# metric = " << metric << endl
<<
"# tol = " << opts.
tol << endl;
dout <<
catchmark(
"metric") << metric << endl;
F.put (dout, xh);
continuation (F, xh, &dout, &derr, opts);
}
see the Float page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the continuation page for the full documentation
The combustion problem: class header for the Newton method.
This file is part of Rheolef.
rheolef - reference manual
see the continuation_option page for the full documentation
Float ini_delta_parameter
Float max_delta_parameter
Float min_delta_parameter