Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
navier_stokes_taylor_error_dg.cc

The Navier-Stokes equations for the Taylor benchmark – error analysis.

The Navier-Stokes equations for the Taylor benchmark – error analysis

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "taylor_exact.h"
int main(int argc, char**argv) {
environment rheolef(argc, argv);
Float err_u_linf_expected = (argc > 1) ? atof(argv[1]) : 1e+38;
Float err_p_linf_expected = (argc > 2) ? atof(argv[2]) : err_u_linf_expected;
bool have_kinetic_energy = (argc > 3);
bool dump = (argc > 4);
Float Re;
field uh;
din >> catchmark("Re") >> Re
>> catchmark("u") >> uh;
space Xh = uh.get_space();
size_t k = Xh.degree();
geo omega = Xh.get_geo();
string approx = "P"+to_string(k)+"d";
space Qh (omega, approx);
field ph(Qh);
din >> catchmark("p") >> ph;
size_t d = omega.dimension();
iopt.set_family(integrate_option::gauss);
iopt.set_order(2*k+1);
#ifdef TODO
Float p_moy = integrate (omega, ph, iopt);
ph = ph-p_moy;
#else // TODO
trial p (Qh); test q (Qh);
form mp = integrate(p*q);
Float p_moy = mp (ph, field(Qh,1));
ph = ph-p_moy;
#endif // TODO
string high_approx = "P"+to_string(k+1)+"d";
space Xh1 (omega, high_approx, "vector"),
Qh1 (omega, high_approx);
field euh = lazy_interpolate (Xh1, uh-u_exact());
field eph = lazy_interpolate (Qh1, ph-p_exact(Re,have_kinetic_energy));
Float err_u_l2 = sqrt(integrate (omega, norm2(uh-u_exact()), iopt));
Float err_u_linf = euh.max_abs();
Float err_u_h1 = sqrt(integrate (omega, norm2(grad_h(euh)), iopt)
+ integrate (omega.sides(), (1/h_local())*norm2(jump(euh)), iopt));
Float err_p_l2 = sqrt(integrate (omega, sqr(ph-p_exact(Re,have_kinetic_energy)), iopt));
Float err_p_linf = eph.max_abs();
derr << "err_u_l2 = " << err_u_l2 << endl
<< "err_u_linf = " << err_u_linf << endl
<< "err_u_h1 = " << err_u_h1 << endl
<< "err_p_l2 = " << err_p_l2 << endl
<< "err_p_linf = " << err_p_linf << endl;
if (dump) {
dout << catchmark("uh") << uh
<< catchmark("u") << lazy_interpolate (Xh, u_exact())
<< catchmark("eu") << euh
<< catchmark("ph") << ph
<< catchmark("p") << lazy_interpolate (Qh, p_exact(Re,have_kinetic_energy))
<< catchmark("ep") << eph;
}
return ((err_u_linf <= err_u_linf_expected) && (err_p_linf <= err_p_linf_expected)) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
int main()
Definition field2bb.cc:58
space_basic< T, M > Xh1
Definition field_expr.h:232
verbose clean transpose logscale grid shrink ball stereo iso volume skipvtk deformation fastfieldload lattice reader_on_stdin color format format format format format format format format format format format format format format format format format format dump
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
Definition sphere.icc:25
The Taylor benchmark – the exact solution of the Stokes problem.