25int main(
int argc,
char**argv) {
29 space Bh (omega,
"bubble",
"vector");
31 space Qh (omega,
"P1");
32 trial u1 (X1h), ub (Bh),
p (Qh);
33 test v1 (X1h), vb (Bh), q (Qh);
41 a.set_uu().set_symmetry(
true);
42 field uh (Xh, 0), ph (Qh, 0);
45 stokes.solve (
field(Xh,0),
field(Qh,0), uh, ph);
46 dout <<
catchmark(
"inv_lambda") << 0 << endl
see the field page for the full documentation
see the geo page for the full documentation
see the problem_mixed page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The contraction geometry: boundary conditions.
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type D(const Expr &expr)
D(uh): see the expression page for the full documentation.
T ddot(const tensor_basic< T > &a, const tensor_basic< T > &b)
ddot(x,y): see the expression page for the full documentation
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::divergence > >::type div(const Expr &expr)
div(uh): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
rheolef - reference manual
static space velocity_space(geo omega, string approx)
static field velocity_field(space Xh)