Convection-diffusion equation by the hybrid discontinuous Galerkin method.
int main (
int argc,
char **argv) {
Float tol = (argc > 1) ? atof(argv[1]) : 1e+38;
space Xh = phi_h.get_space();
geo omega = phi_h.get_geo();
size_t d = Xh.get_geo().dimension();
size_t k = Xh.degree();
Float err_l2 = sqrt(integrate (omega, sqr(phi_h-
phi(
d,
nu)), iopt));
basis b1 = Xh.get_basis();
b1.reset_family_index (k+1);
Float err_linf = eh.max_abs();
Float err_h1 = sqrt(integrate (omega, norm2(grad_h(eh)), iopt)
+ integrate (omega.sides(), (1/h_local())*sqr(jump(eh)), iopt));
derr << "err_l2 = " << err_l2 << endl
<< "err_linf = " << err_linf << endl
<< "err_h1 = " << err_h1 << endl;
}
return (err_linf <= tol) ? 0 : 1;
}
see the Float page for the full documentation
see the basis page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
verbose clean transpose logscale grid shrink ball stereo iso volume skipvtk deformation fastfieldload lattice reader_on_stdin color format format format format format format format format format format format format format format format format format format dump
This file is part of Rheolef.
rheolef - reference manual