Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
p_laplacian_newton.cc

The p-Laplacian problem by the Newton method.

The p-Laplacian problem by the Newton method

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "p_laplacian.h"
int main(int argc, char**argv) {
environment rheolef (argc, argv);
geo omega (argv[1]);
Float eps = std::numeric_limits<Float>::epsilon();
string approx = (argc > 2) ? argv[2] : "P1";
Float p = (argc > 3) ? atof(argv[3]) : 1.5;
Float tol = (argc > 4) ? atof(argv[4]) : 1e5*eps;
size_t max_iter = (argc > 5) ? atoi(argv[5]) : 500;
derr << "# P-Laplacian problem by Newton:" << endl
<< "# geo = " << omega.name() << endl
<< "# approx = " << approx << endl
<< "# p = " << p << endl
<< "# tol = " << tol << endl
<< "# max_iter = " << max_iter << endl;
p_laplacian F (p, omega, approx);
field uh = F.initial ();
int status = newton (F, uh, tol, max_iter, &derr);
dout << setprecision(numeric_limits<Float>::digits10)
<< catchmark("p") << p << endl
<< catchmark("u") << uh;
return status;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
field initial() const
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
int main()
Definition field2bb.cc:58
This file is part of Rheolef.
STL namespace.
The p-Laplacian problem by the Newton method – class header.
rheolef - reference manual
Definition sphere.icc:25