30int main(
int argc,
char**argv) {
34 string approx = (argc > 2) ? argv[2] :
"P1";
35 Float S = (argc > 3) ? atof(argv[3]) : 0.6;
36 Float n = (argc > 4) ? atof(argv[4]) : 1;
37 Float Cf = (argc > 5) ? atof(argv[5]) : 1;
38 Float r = (argc > 6) ? atof(argv[6]) : 1;
39 Float tol = 1e3*numeric_limits<Float>::epsilon();
40 size_t max_iter = 100000;
41 space Xh (omega, approx);
45 space Wh (omega[
"boundary"], Xh.get_approx());
46 field lambda_h = Cf*uh[
"boundary"];
48 lh, lambda_h, uh, tol, max_iter, r);
49 dout << setprecision(numeric_limits<Float>::digits10)
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
This file is part of Rheolef.
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
The Poisson problem with Robin boundary condition – solver function.
field poisson_robin(Float Cf, const geo &boundary, const field &lh)
rheolef - reference manual
The yield slip problem by the augmented Lagrangian method – solver function.
int yield_slip_augmented_lagrangian(Float S, Float n, Float Cf, geo boundary, field lh, field &lambda_h, field &uh, Float tol, size_t max_iter, Float r)