The p-Laplacian problem on a circular geometry – error analysis.
The p-Laplacian problem on a circular geometry – error analysis
int main(
int argc,
char**argv) {
Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
const geo& omega = uh.get_geo();
const space& Xh = uh.get_space();
Float err_lp = pow(integrate (omega,
Float err_w1p = pow(integrate (omega,
pow(norm(grad(uh) -
grad_u(
p)),
p), iopt), 1./
p);
Float err_linf = eh.max_abs();
dout << "err_linf = " << err_linf << endl
<< "err_lp = " << err_lp << endl
<< "err_w1p = " << err_w1p << endl;
return (err_linf < tol) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
This file is part of Rheolef.
The p-Laplacian problem on a circular geometry – exact solution.
rheolef - reference manual