Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
mosolov_augmented_lagrangian.cc

The Mossolov problem by the augmented Lagrangian method.

The Mossolov problem by the augmented Lagrangian method

#include "rheolef.h"
using namespace std;
using namespace rheolef;
int main(int argc, char**argv) {
environment rheolef (argc,argv);
geo omega (argv[1]);
string approx = (argc > 2) ? argv[2] : "P1";
pb.Bi = (argc > 3) ? atof(argv[3]) : 0.2;
pb.n = (argc > 4) ? atof(argv[4]) : 1;
size_t n_adapt = (argc > 5) ? atoi(argv[5]) : 0;
pb.max_iter = (argc > 6) ? atoi(argv[6]) : 10000;
pb.err = (argc > 7) ? atof(argv[7]) : 1e-4;
pb.r = 100;
pb.tol = 1e-10;
pb.hmin = 1e-4;
pb.hmax = 1e-1;
pb.ratio = 3;
pb.additional = "-AbsError";
field sigma_h, uh;
for (size_t i = 0; true; i++) {
pb.reset (omega, approx);
pb.initial (sigma_h, uh);
int status = pb.solve (sigma_h, uh);
odiststream out (omega.name(), "field");
pb.put (out, sigma_h, uh);
if (i == n_adapt) break;
space T0h (sigma_h.get_geo(), "P"+to_string(sigma_h.get_space().degree())+"d");
field ch = lazy_interpolate (T0h, sqrt(abs(dot(sigma_h, grad(uh)))));
omega = adapt (ch, pb);
omega.save();
}
}
see the field page for the full documentation
see the geo page for the full documentation
see the environment page for the full documentation
odiststream: see the diststream page for the full documentation
Definition diststream.h:137
see the space page for the full documentation
int main()
Definition field2bb.cc:58
The Mossolov problem by the augmented Lagrangian method – solver class header.
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
int solve(field &sigma_h, field &uh) const
void put(odiststream &out, field &sigma_h, field &uh) const
void initial(field &sigma_h, field &uh) const