Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
helmholtz_band.cc

The Helmholtz problem on a surface by the banded level-set method.

The Helmholtz problem on a surface by the banded level-set method

#include "rheolef.h"
using namespace std;
using namespace rheolef;
#include "sphere.icc"
int main (int argc, char**argv) {
environment rheolef(argc, argv);
geo lambda (argv[1]);
size_t d = lambda.dimension();
space Xh (lambda, "P1");
field phi_h = lazy_interpolate(Xh, phi);
band gamma_h (phi_h);
field phi_h_band = phi_h [gamma_h.band()];
space Bh (gamma_h.band(), "P1");
Bh.block ("isolated");
Bh.unblock ("zero");
trial u (Bh); test v (Bh);
form a = lazy_integrate (gamma_h, u*v + dot(grad_s(u),grad_s(v)));
field lh = lazy_integrate (gamma_h, f(d)*v);
vector<field> b (gamma_h.n_connected_component());
vector<Float> z (gamma_h.n_connected_component(), 0);
for (size_t i = 0; i < b.size(); i++) {
const domain& cci = gamma_h.band() ["cc"+to_string(i)];
field phi_h_cci (Bh, 0);
phi_h_cci [cci] = phi_h_band [cci];
b[i] = phi_h_cci;
}
form A = {{ a, trans(b) },
{ b, 0 }};
field Fh = { lh, z };
A.set_symmetry(true);
problem pa (A);
field Uh (Fh.get_space(), 0);
pa.solve (Fh, Uh);
dout << catchmark("phi") << phi_h
<< catchmark("u") << Uh[0];
}
field lh(Float epsilon, Float t, const test &v)
see the band page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
int main()
Definition field2bb.cc:58
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
The level set function for the sphere geometry.
Definition cavity_dg.h:29
Definition phi.h:25
Definition leveque.h:25