Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
stokes_obstacle_slip_regul.cc

The Stokes problem on the obstacle benchmark with slip boundary condition – the Taylor-Hood element.

The Stokes problem on the obstacle benchmark with slip boundary condition – the Taylor-Hood element

#include "rheolef.h"
using namespace rheolef;
using namespace std;
point n_exact (const point& x) { return -x; }
int main(int argc, char**argv) {
environment rheolef (argc, argv);
geo omega (argv[1]);
Float eps = (argc > 2) ? atof(argv[2]) : 1e-7;
space Xh (omega, "P2", "vector");
Xh.block ("downstream");
Xh[1].block ("wall");
Xh[1].block ("axis");
Xh[1].block ("vaxis");
space Qh (omega, "P1");
trial u (Xh), p (Qh);
test v (Xh), q (Qh);
form a = integrate (2*ddot(D(u),D(v)))
+ (1/eps)*integrate("obstacle",dot(u,n_exact)*dot(v,n_exact));
form b = integrate (-div(u)*q);
field uh (Xh,0);
uh[0]["downstream"] = 1;
field ph (Qh, 0);
problem_mixed stokes (a, b);
stokes.solve (field(Xh,0), field(Qh,0), uh, ph);
dout << catchmark("u") << uh
<< catchmark("p") << ph;
}
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the point page for the full documentation
see the problem_mixed page for the full documentation
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
int main()
Definition field2bb.cc:58
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
point n_exact(const point &x)
Definition sphere.icc:25
Definition leveque.h:25