Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
navier_stokes_upw_dg.icc

The Navier-Stokes equations with the discontinuous Galerkin method and upwinding – class body.

The Navier-Stokes equations with the discontinuous Galerkin method and upwinding – class body

#include "inertia_upw.icc"
Float Re1, const geo& omega, string approx)
: navier_stokes_dg (Re1, omega, approx) {}
navier_stokes_upw_dg::residue (const value_type& xh) const {
trial u (Xh); test v (Xh);
form a = a0 + Re*( inertia (xh[0], u, v, iopt)
+ inertia_upw (xh[0], u, v, iopt));
value_type mrh(2);
mrh[0] = a*xh[0] + b.trans_mult(xh[1]) - lh;
mrh[1] = b*xh[0] - c*xh[1] - kh;
return mrh;
}
void navier_stokes_upw_dg::update_derivative (const value_type& xh) const {
trial du (Xh); test v (Xh);
a1 = a0 + Re*( inertia (xh[0], du, v, iopt)
+ inertia_upw (xh[0], du, v, iopt)
+ inertia (du, xh[0], v, iopt)
+ d_inertia_upw (xh[0], du, xh[0], v, iopt));
stokes1.set_metric (mp);
}
see the Float page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem_mixed page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
form inertia(W w, U u, V v, integrate_option iopt=integrate_option())
Definition inertia.h:26
The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – upwinding var...
form d_inertia_upw(field w, trial dw, field u, test v, integrate_option iopt=integrate_option())
form inertia_upw(field w, trial u, test v, integrate_option iopt=integrate_option())
integrate_option iopt
problem_mixed stokes1
navier_stokes_upw_dg(Float Re, const geo &omega, string approx)
value_type residue(const value_type &uh) const
void update_derivative(const value_type &uh) const
navier_stokes_dg::value_type value_type
Definition leveque.h:25