The yield slip problem – class body.
const geo& omega,
const geo& boundary1,
string approx)
: S(S1), n(n1), Cf(Cf1), r(r1), boundary(boundary1), Xh(), Wh(), Yh(),
lh(), mkh(), m(), mb(), a(), b(), c1(), pmb(), pa(), pA()
{
Xh =
space (omega, approx);
Wh =
space (boundary, approx);
Yh = Xh*Wh;
a = integrate(dot(grad(
u),grad(v))) - r*integrate(boundary,
u*v);
b = integrate(boundary,
u*mu);
mkh = b*vh;
}
field rhs =
b.trans_mult (beta_h);
return mrh;
}
A.set_symmetry (
c1.is_symmetric());
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
void update_derivative(const field &beta_h) const
yield_slip(Float S, Float n, Float Cf, Float r, const geo &omega, const geo &boundary, string approx="P1")
field residue(const field &beta_h) const
The projection for yield-stress rheology – its derivative.
class rheolef::details::field_expr_v2_nonlinear_node_unary compose
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
csr< T, sequential > trans(const csr< T, sequential > &a)
trans(a): see the form page for the full documentation