Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
sphere.icc
Go to the documentation of this file.
1
25struct p {
26 Float operator() (const point& x) const {
27 if (d == 2) return 26*(pow(x[0],5) - 10*pow(x[0],3)*sqr(x[1])
28 + 5*x[0]*pow(x[1],4));
29 else return 3*sqr(x[0])*x[1] - pow(x[1],3);
30 }
31 p (size_t d1) : d(d1) {}
32 protected: size_t d;
33};
34struct f {
35 Float operator() (const point& x) const {
36 if (d == 2) return _p(x)/pow(norm(x),5);
37 else return alpha*_p(x);
38 }
39 f (size_t d1) : d(d1), _p(d1), alpha(0) {
40 Float pi = acos(Float(-1));
41 alpha = -(13./8.)*sqrt(35./pi);
42 }
43 protected: size_t d; p _p; Float alpha;
44};
45struct u_exact {
46 Float operator() (const point& x) const {
47 if (d == 2) return _f(x)/(25+sqr(norm(x)));
48 else return sqr(norm(x))/(12+sqr(norm(x)))*_f(x);
49 }
50 u_exact (size_t d1) : d(d1), _f(d1) {}
51 protected: size_t d; f _f;
52};
53Float phi (const point& x) { return norm(x) - 1; }
see the Float page for the full documentation
see the point page for the full documentation
Definition cavity_dg.h:29
point operator()(const point &x) const
Definition cavity_dg.h:30
Float alpha
Definition sphere.icc:43
p _p
Definition sphere.icc:43
f(size_t d1)
Definition sphere.icc:39
const Float pi
Definition sphere.icc:25
size_t d
Definition sphere.icc:32
p(size_t d1)
Definition sphere.icc:31
Float operator()(const point &x) const
Definition sphere.icc:26
Definition phi.h:25
point operator()(const point &x) const
u_exact(size_t d1)
Definition sphere.icc:50