The transmission problem with discontinuous Galerkin method.
int main(
int argc,
char**argv) {
string approx = (argc > 2) ? argv[2] : "P1d";
space Xh (omega, approx);
size_t d = omega.dimension();
size_t k = Xh.degree();
check_macro (k >= 1,
"polynomial degree k="<<k<<
" shoud be >= 1");
eta_h["east"] = 1;
geo gamma_d = omega[
"left"] + omega[
"right"];
geo Shd = omega[
"internal_sides"] + gamma_d;
auto eta_s = 2/(1/inner(eta_h) + 1/outer(eta_h));
auto eta_w_o = inner(eta_h)/(inner(eta_h) + outer(eta_h));
auto eta_w_i = outer(eta_h)/(inner(eta_h) + outer(eta_h));
auto average_w_u = eta_w_i*inner(eta_h*dot(grad_h(
u),normal()))
+ eta_w_o*outer(eta_h*dot(grad_h(
u),normal()));
auto average_w_v = eta_w_i*inner(eta_h*dot(grad_h(v),normal()))
+ eta_w_o*outer(eta_h*dot(grad_h(v),normal()));
form a = integrate (eta_h*dot(grad_h(
u),grad_h(v)))
+ integrate (Shd, beta*penalty()*eta_s*jump(
u)*jump(v)
- jump(v)*average_w_u);
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the solver_option page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
check_macro(expr1.have_homogeneous_space(Xh1), "dual(expr1,expr2); expr1 should have homogeneous space. HINT: use dual(interpolate(Xh, expr1),expr2)")
This file is part of Rheolef.
rheolef - reference manual