The combustion problem by Keller continuation – post-treatment.
int main(
int argc,
char**argv) {
string metric;
dout << noverbose
<< setprecision(numeric_limits<Float>::digits10)
<< "# metric " << metric << endl
<< "# s lambda umax det(mantissa,base,exp) |u| |grad(u)| |residue|"
<< endl;
for (size_t n = 0; F.get(din,xh); ++n) {
problem::determinant_type det;
if (n > 0 || metric != "spherical") det = F.update_derivative(xh);
const space& Xh = xh.second.get_space();
form a = integrate(dot(grad(
u),grad(v))),
dout << F.parameter() << " " << xh.first
<< " " << xh.second.max_abs()
<< " " << det.mantissa
<< " " << det.base
<< " " << det.exponant
<< " " << sqrt(m(xh.second,xh.second))
<< " " << sqrt(a(xh.second,xh.second))
<< endl;
dot_xh = F.direction (xh);
F.refresh (F.parameter(), xh, dot_xh);
}
}
see the field page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the continuation page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The combustion problem: class header for the Newton method.
This file is part of Rheolef.
rheolef - reference manual
float_type dual_space_dot(const field &mrh, const field &msh) const
field residue(const field &uh) const