Rheolef
7.2
an efficient C++ finite element environment
Loading...
Searching...
No Matches
damped_newton.h
Go to the documentation of this file.
1
# ifndef _RHEO_DAMPED_NEWTON_H
2
# define _RHEO_DAMPED_NEWTON_H
3
//
4
// This file is part of Rheolef.
5
//
6
// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
7
//
8
// Rheolef is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 2 of the License, or
11
// (at your option) any later version.
12
//
13
// Rheolef is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
// GNU General Public License for more details.
17
//
18
// You should have received a copy of the GNU General Public License
19
// along with Rheolef; if not, write to the Free Software
20
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21
//
22
// =========================================================================
23
// AUTHOR: Pierre.Saramito@imag.fr
24
// DATE: 14 oct 2009
25
26
namespace
rheolef
{
86
}
// namespace rheolef
87
88
#include "rheolef/damped-newton-generic.h"
89
#include "rheolef/newton_add_missing.h"
90
91
namespace
rheolef
{
92
93
// [verbatim_damped_newton]
94
template
<
class
Problem,
class
Field,
class
Real,
class
Size>
95
int
damped_newton
(
const
Problem& F, Field&
u
, Real& tol, Size& max_iter,
odiststream
* p_derr=0)
96
// [verbatim_damped_newton]
97
{
98
details::add_missing_damped_newton<Problem>
G (F);
// TODO: avoid a copy of pb F here: put a reference in G ?
99
return
damped_newton
(G,
newton_identity_preconditioner
(),
u
, tol, max_iter, p_derr);
100
}
101
102
}
// namespace rheolef
103
# endif
// _RHEO_DAMPED_NEWTON_H
rheolef::details::add_missing_damped_newton
Definition
newton_add_missing.h:249
rheolef::odiststream
odiststream: see the diststream page for the full documentation
Definition
diststream.h:137
rheolef
This file is part of Rheolef.
Definition
compiler_eigen.h:39
rheolef::damped_newton
int damped_newton(const Problem &P, const Preconditioner &T, Field &u, Real &tol, Size &max_iter, odiststream *p_derr=0)
see the damped_newton page for the full documentation
Definition
damped-newton-generic.h:29
rheolef::newton_identity_preconditioner
Definition
damped-newton-generic.h:77
u
Definition
leveque.h:25