29 :
p(p1), Xh(),
lh(), m(), pm(), a1(), pa1() {
31 Xh.block (
"boundary");
44 form a = integrate (compose(
eta(
p), norm2(grad(uh)))*dot(grad(
u),grad(v)));
50 size_t d =
Xh.get_geo().dimension();
52 a1 = integrate (dot(compose(
nu<eta>(
eta(
p),
d), grad(uh))*grad(
u),grad(v)));
57 pa1.solve (rh, delta_uh);
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
field derivative_solve(const field &mrh) const
p_laplacian(Float p, const geo &omega, string approx)
void update_derivative(const field &uh) const
field residue(const field &uh) const
see the problem page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The Poisson problem with homogeneous Dirichlet boundary condition – solver function.
void dirichlet(const field &lh, field &uh)
The p-Laplacian problem – the eta function.
The p-Laplacian problem – the nu function.