29int main(
int argc,
char**argv) {
31 Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
39 const geo& omega = uh.get_geo();
40 geo boundary = omega[
"boundary"];
41 const space& Xh = uh.get_space();
43 field eh = pi_h_u - uh;
47 Float err_linf = eh.max_abs();
50 Float err_b = sqrt(
integrate (boundary, sqr(uh[boundary] -
u(S,n,Cf)), iopt));
52 dout <<
"err_linf = " << err_linf << endl
53 <<
"err_l2 = " << err_l2 << endl
54 <<
"err_h1 = " << err_h1 << endl
55 <<
"err_b = " << err_b << endl
56 <<
"err_lb = " << err_lb << endl;
57 return (err_linf < tol) ? 0 : 1;
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
field_basic< T, M > lazy_interpolate(const space_basic< T, M > &X2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
rheolef - reference manual
The yield slip problem on a circle – exact solution.