The Navier-Stokes equations for the Taylor benchmark with fixed-point and discontinuous Galerkin methods – di Pietro & Ern variant.
The Navier-Stokes equations for the Taylor benchmark with fixed-point and discontinuous Galerkin methods – di Pietro & Ern variant
int main(
int argc,
char**argv) {
space Xh (omega, argv[2],
"vector");
space Qh (omega, argv[2]);
Float Re = (argc > 3) ? atof(argv[3]) : 1;
size_t max_iter = (argc > 4) ? atoi(argv[4]) : 1;
field uh (Xh, 0), ph (Qh, 0);
stokes.set_metric (mp);
stokes.solve (
lh, kh, uh, ph);
derr << "#k r as" << endl;
for (size_t k = 0; k < max_iter; ++k) {
stokes.set_metric (mp);
stokes.solve (
lh, kh, uh, ph);
a1 = a + Re*th;
field rh = a1*uh + b.trans_mult(ph) -
lh;
derr << k << " " << rh.max_abs() << " " << th(uh,uh) << endl;
}
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the problem_mixed page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – di Pietro & E...
form inertia(W w, U u, V v, integrate_option iopt=integrate_option())
field inertia_fix_rhs(test v, integrate_option iopt=integrate_option())
This file is part of Rheolef.
rheolef - reference manual
The Stokes problem with Dirichlet boundary condition by the discontinuous Galerkin method – solver fu...
void stokes_dirichlet_dg(const space &Xh, const space &Qh, form &a, form &b, form &c, form &mp, field &lh, field &kh, integrate_option iopt=integrate_option())
The Taylor benchmark – right-hand-side and boundary condition.