The Zalesak slotted disk benchmark by the discontinuous Galerkin method.
int main(
int argc,
char**argv) {
space Xh (omega, argv[2]);
size_t n_max = (argc > 3) ? atoi(argv[3]) : 1000;
size_t strip = (argc > 4) ? string(argv[4]) == "true" : false;
size_t p = (argc > 5) ? atoi(argv[5]) : min(Xh.degree()+1,
bdf::pmax);
a0 = integrate (dot(
u(),grad_h(
phi))*xi)
+ integrate (
"boundary", max(0, -dot(
u(),normal()))*
phi*xi)
+ integrate ("internal_sides",
- dot(
u(),normal())*jump(
phi)*average(xi)
+ 0.5*abs(dot(
u(),normal()))*jump(
phi)*jump(xi));
vector<field> phi_h (
p+1);
phi_h[0] = phi_h[1] = lazy_interpolate (Xh,
phi0());
dout << event (0, phi_h[0]);
for (size_t n = 1; n <= n_max; n++) {
if (n % 10 == 0) derr << "[" << n << "]";
for (size_t i = 1; i <= pn; i++)
+ integrate(
"boundary", max(0,-dot(
u(),normal()))*
phi_exact(t)*xi);
}
check_macro (phi_h[0].max_abs() < 100,
"BDF failed -- HINT: decrease delta_t");
if (!strip || n == n_max) dout << event (t, phi_h[0]);
for (
size_t i = min(
p,pn+1); i >= 1; i--)
phi_h[i] = phi_h[i-1];
}
derr << endl;
}
BDF(p) backward differentiation formula – coefficients.
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the branch page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
check_macro(expr1.have_homogeneous_space(Xh1), "dual(expr1,expr2); expr1 should have homogeneous space. HINT: use dual(interpolate(Xh, expr1),expr2)")
Float alpha[pmax+1][pmax+1]
This file is part of Rheolef.
rheolef - reference manual
The Zalesak slotted disk benchmark – the exact solution.