The Mossolov problem for a circular pipe – error analysis.
int main(
int argc,
char**argv) {
Float tol_u = (argc > 1) ? atof(argv[1]) : 1e-15;
Float tol_s = (argc > 2) ? atof(argv[2]) : 1e-15;
const geo& omega = uh.get_geo();
Float meas_omega = integrate(uh.get_geo());
geo boundary = omega[
"boundary"];
const space& Xh = uh.get_space();
const space& Th = sigma_h.get_space();
Float err_u_l2 = sqrt(integrate (omega, sqr(uh -
u(Bi,n)), iopt)/meas_omega);
Float err_u_h1 = sqrt(integrate (omega, norm2(grad(uh) -
grad_u(Bi,n)), iopt)/meas_omega);
Float err_s_l2 = sqrt(integrate (omega, norm2(sigma_h -
sigma(Bi,n)), iopt)/meas_omega);
space Xh1 (omega,
"P" + to_string(2*Xh.degree()));
space Th1 (omega,
"P" + to_string(2*Xh.degree()) +
"d",
"vector");
field euh = lazy_interpolate (
Xh1, uh -
u(Bi,n));
field esh = lazy_interpolate (Th1, sigma_h -
sigma(Bi,n));
Float err_u_linf = euh.max_abs();
Float err_s_linf = esh.max_abs();
dout << "err_u_linf = " << err_u_linf << endl
<< "err_u_l2 = " << err_u_l2 << endl
<< "err_u_h1 = " << err_u_h1 << endl
<< "err_s_linf = " << err_s_linf << endl
<< "err_s_l2 = " << err_s_l2 << endl;
return (err_u_linf < tol_u) && (err_s_l2 < tol_s) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
The Mossolov problem for a circular pipe – exact solution.
This file is part of Rheolef.
rheolef - reference manual