30int main(
int argc,
char**argv) {
32 Float err_linf_expected = (argc > 1) ? atof(argv[1]) : 1e+38;
35 space Tth = sigmat_h.get_space();
36 geo omega = Tth.get_geo();
37 size_t k = Tth.degree() - 1;
38 size_t d = omega.dimension();
43 space Th1 (omega,
"P"+to_string(k+1)+
"d",
"vector");
45 Float err_sigmat_linf = esth.max_abs();
46 derr <<
"err_sigmat_l2 = " << err_sigmat_l2 << endl
47 <<
"err_sigmat_linf = " << err_sigmat_linf << endl;
49 space Lh1 (omega,
"P"+to_string(k+2)+
"d");
51 Float err_div_sigmat_linf = edsth.max_abs();
52 derr <<
"err_div_sigmat_l2 = " << err_div_sigmat_l2 << endl
53 <<
"err_div_sigmat_linf = " << err_div_sigmat_linf << endl;
54 return (err_sigmat_linf <= err_linf_expected) ? 0 : 1;
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::divergence > >::type div_h(const Expr &expr)
div_h(uh): see the expression page for the full documentation
field_basic< T, M > lazy_interpolate(const space_basic< T, M > &X2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
rheolef - reference manual
The sinus product function – right-hand-side and boundary condition for the Poisson problem.
The sinus product function – its gradient.