The p-Laplacian problem by the Newton method.
The p-Laplacian problem by the Newton method
int main(
int argc,
char**argv) {
Float eps = std::numeric_limits<Float>::epsilon();
string approx = (argc > 2) ? argv[2] : "P1";
Float p = (argc > 3) ? atof(argv[3]) : 1.5;
Float tol = (argc > 4) ? atof(argv[4]) : 1e5*eps;
size_t max_iter = (argc > 5) ? atoi(argv[5]) : 500;
derr << "# P-Laplacian problem by Newton:" << endl
<< "# geo = " << omega.name() << endl
<< "# approx = " << approx << endl
<< "# tol = " << tol << endl
<< "# max_iter = " << max_iter << endl;
int status = newton (F, uh, tol, max_iter, &derr);
dout << setprecision(numeric_limits<Float>::digits10)
return status;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
This file is part of Rheolef.
The p-Laplacian problem by the Newton method – class header.
rheolef - reference manual