Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
dirichlet_hdg_post.cc
Go to the documentation of this file.
1
25#include "rheolef.h"
26using namespace rheolef;
27using namespace std;
28#include "sinusprod_dirichlet.h"
30int main(int argc, char**argv) {
31 environment rheolef (argc, argv);
32 Float n, beta;
33 field uh, lambda_h, sigma_h;
34 din >> catchmark("n") >> n
35 >> catchmark("beta") >> beta
36 >> catchmark("u") >> uh
37 >> catchmark("lambda") >> lambda_h
38 >> catchmark("sigma") >> sigma_h;
39 field bar_uh = dirichlet_hdg_average (uh, lambda_h);
40 const geo& omega = uh.get_geo();
41 size_t d = omega.dimension();
42 size_t k = uh.get_space().degree();
43 space Xhs (omega, "P"+to_string(k+1)+"d"),
44 Zhs (omega, "P0"),
45 Yhs = Xhs*Zhs;
46 trial x(Yhs); test y(Yhs);
47 auto us = x[0], zeta = x[1];
48 auto vs = y[0], xi = y[1];
50 iopt.invert = true;
51 form inv_ahs = integrate(dot(grad_h(us),grad_h(vs)) + zeta*vs + xi*us, iopt);
52 field lhs = integrate (f(d)*vs + xi*bar_uh
53 + on_local_sides(dot(sigma_h,normal())*vs));
54 field xhs = inv_ahs*lhs;
55 dout << catchmark("n") << n << endl
56 << catchmark("beta") << beta << endl
57 << catchmark("u") << xhs[0]
58 << catchmark("lambda") << lambda_h
59 << catchmark("sigma") << sigma_h
60 << catchmark("zeta") << xhs[1];
61}
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
see the integrate_option page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The Poisson problem by the hybrid discontinuous Galerkin method – local averaging function.
field dirichlet_hdg_average(field uh, field lambda_h)
int main()
Definition field2bb.cc:58
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::normal_pseudo_function< Float > > normal()
normal: see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition integrate.h:211
std::enable_if< details::is_field_expr_v2_variational_arg< Expr >::value, details::field_expr_quadrature_on_sides< Expr > >::type on_local_sides(const Expr &expr)
on_local_sides(expr): see the expression page for the full documentation
rheolef::std enable_if ::type dot const Expr1 expr1, const Expr2 expr2 dot(const Expr1 &expr1, const Expr2 &expr2)
STL namespace.
rheolef - reference manual
The sinus product function – right-hand-side and boundary condition for the Poisson problem.
Definition cavity_dg.h:29