Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
mosolov_error_yield_surface.cc

The Mossolov problem for a circular pipe – error analysis for the yield surface.

The Mossolov problem for a circular pipe – error analysis for the yield surface

#include "rheolef.h"
using namespace rheolef;
using namespace std;
Float delta (Float f, Float g) { return (f*g >= 0) ? 0 : 1; }
int main(int argc, char**argv) {
environment rheolef (argc,argv);
Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
Float Bi;
field sigma_h;
din >> catchmark("Bi") >> Bi
>> catchmark("sigma") >> sigma_h;
space Th = sigma_h.get_space();
geo omega = Th.get_geo();
iopt.set_family(integrate_option::gauss);
iopt.set_order(4*(Th.degree()+1));
Float err_ys_l1 = integrate (omega,
compose(delta, norm(sigma_h)-Bi, norm(sigma())-Bi), iopt);
dout << "err_ys_l1 = " << err_ys_l1 << endl;
return err_ys_l1 < tol ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
int main()
Definition field2bb.cc:58
Float delta(Float f, Float g)
The Mossolov problem for a circular pipe – exact solution.
This file is part of Rheolef.
STL namespace.
rheolef - reference manual
Definition cavity_dg.h:29
Definition cavity_dg.h:25