Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
diffusion_transport_tensor_error_dg.cc
Go to the documentation of this file.
1
25#include "rheolef.h"
26using namespace rheolef;
27using namespace std;
29int main(int argc, char**argv) {
30 environment rheolef (argc, argv);
31 Float tol = (argc > 1) ? atof(argv[1]) : 1e-10;
32 Float nu, t0;
33 field sigma_h;
34 din >> catchmark("nu") >> nu
35 >> catchmark("t0") >> t0
36 >> catchmark("sigma") >> sigma_h;
37 size_t k = sigma_h.get_space().degree();
40 iopt.set_order(3*(k+1));
41 Float err_l2 = sqrt(integrate (sigma_h.get_geo(), norm2(sigma_h - sigma_exact(nu,t0)), iopt));
42 space Th1 (sigma_h.get_geo(), "P"+itos(3*(k+1))+"d", "tensor");
43 field eh = interpolate(Th1, sigma_h - sigma_exact(nu,t0));
44 Float err_linf = eh.max_abs();
45 derr << "err_l2 = " << err_l2 << endl
46 << "err_linf = " << err_linf << endl;
47 return (err_l2 < tol) ? 0 : 1;
48}
see the Float page for the full documentation
see the field page for the full documentation
see the catchmark page for the full documentation
Definition catchmark.h:67
see the environment page for the full documentation
see the integrate_option page for the full documentation
void set_family(family_type type)
see the space page for the full documentation
int main()
Definition field2bb.cc:58
This file is part of Rheolef.
std::string itos(std::size_t i)
Definition rheostream.h:279
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
Definition vec.h:379
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition integrate.h:211
field_basic< T, M > interpolate(const space_basic< T, M > &V2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
STL namespace.
rheolef - reference manual
Definition nu.h:26
The tensorial transport benchmark – right-hand-side and exact solution.