Rheolef  7.2
an efficient C++ finite element environment
 
Loading...
Searching...
No Matches
cosinusrad_laplace.h

The cosinus radius function – right-hand side and boundary condition.

The cosinus radius function – right-hand side and boundary condition

struct f {
Float operator() (const point& x) const {
Float r = sqrt(sqr(x[0])+sqr(x[1])+sqr(x[2]));
Float sin_over_ar = (r == 0) ? 1 : sin(a*r)/(a*r);
return sqr(a)*((d-1)*sin_over_ar + cos(a*r)); }
f(size_t d1) : d(d1), a(acos(Float(-1.0))) {}
size_t d; Float a;
};
struct g {
Float operator() (const point& x) const {
return cos(a*sqrt(sqr(x[0])+sqr(x[1])+sqr(x[2]))); }
g(size_t=0) : a(acos(Float(-1.0))) {}
};
see the Float page for the full documentation
see the point page for the full documentation
Definition cavity_dg.h:29
Float a
point operator()(const point &x) const
Definition cavity_dg.h:30
f()
Definition taylor.h:34
Definition cavity_dg.h:25
Float a
point operator()(const point &x) const
Definition cavity_dg.h:26
g()
Definition taylor.h:29
Float r
Definition phi.h:54