0.1 1lognorm: Log-Normal Regression for Duration De-
pendent Variables

The log-normal model describes an event’s duration, the dependent variable, as a function
of a set of explanatory variables. The log-normal model may take time censored dependent
variables, and allows the hazard rate to increase and decrease.

Syntax

> z.out <- zelig(Surv(Y, C) ~ X, model = "lognorm", data = mydata)
> x.out <- setx(z.out)
> s.out <- sim(z.out, x = x.out)

Log-normal models require that the dependent variable be in the form Surv(Y, C), where Y
and C are vectors of length n. For each observation ¢ in 1, ..., n, the value y; is the duration
(lifetime, for example) of each subject, and the associated ¢; is a binary variable such that
¢; = 1 if the duration is not censored (e.g., the subject dies during the study) or ¢; = 0 if the
duration is censored (e.g., the subject is still alive at the end of the study). If ¢; is omitted,
all Y are assumed to be completed; that is, time defaults to 1 for all observations.

Input Values

In addition to the standard inputs, zelig() takes the following additional options for log-
normal regression:

e robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based
on sandwich estimators (see ?7) and ?)) based on the options in cluster.

e cluster: if robust = TRUE, you may select a variable to define groups of correlated
observations. Let x3 be a variable that consists of either discrete numeric values,
character strings, or factors that define strata. Then

TRUE, cluster = "x3",
mydata)

> z.out <- zelig(y = xl1 + x2, robust
model = "exp", data

means that the observations can be correlated within the strata defined by the variable
x3, and that robust standard errors should be calculated according to those clusters. If
robust = TRUE but cluster is not specified, zelig() assumes that each observation
falls into its own cluster.

Example

Attach the sample data:

> data(coalition)



Estimate the model:

> z.out <- zelig(Surv(duration, ciepl2) ~ fract + numst2, model = "lognorm",
+ data = coalition)

View the regression output:
> summary(z.out)

Set the baseline values (with the ruling coalition in the minority) and the alternative values
(with the ruling coalition in the majority) for X:

> x.low <- setx(z.out, numst2 = 0)
> x.high <- setx(z.out, numst2 = 1)

Simulate expected values (qi$ev) and first differences (qi$fd):
> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

> plot(s.out)
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Model

Let Y;* be the survival time for observation i with the density function f(y) and the corre-
sponding distribution function F(t) = fot f(y)dy. This variable might be censored for some
observations at a fixed time y. such that the fully observed dependent variable, Y;, is defined

as
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e The stochastic component is described by the distribution of the partially observed
variable, Y*. For the lognormal model, there are two equivalent representations:

Y ~ LogNormal(u;,0?) or log(Y;") ~ Normal(u;, o)
where the parameters p; and o2 are the mean and variance of the Normal distribution.

(Note that the output from zelig() parameterizes scale= o.)

In addition, survival models like the lognormal have three additional properties. The
hazard function A(t) measures the probability of not surviving past time ¢ given survival
up to t. In general, the hazard function is equal to f(t)/S(t) where the survival function
S(t)=1- fg f(s)ds represents the fraction still surviving at time ¢. The cumulative
hazard function H(t) describes the probability of dying before time ¢. In general,
H(t)= fot h(s)ds = —log S(t). In the case of the lognormal model,

1 1 ,
h(t) = mexp{—ﬁ(log)\t) }

S = 1-a (% log )\t)

H(t) = —log{l 9 (%log)\t)}

where ®(-) is the cumulative density function for the Normal distribution.

e The systematic component is described as:
pi = 3.

Quantities of Interest

e The expected values (qi$ev) for the lognormal model are simulations of the expected
duration:

1
E(Y) = exp (Mi + §U2> )

given draws of  and o from their sampling distributions.



e The predicted value is a draw from the log-normal distribution given simulations of
the parameters (\;, o).

e The first difference (qi$fd) is

FD = E(Y | 2) — E(Y | z).

e In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

s O {¥lt = 1) - B = o)),

where t; is a binary explanatory variable defining the treatment (¢; = 1) and control
(t; = 0) groups. When Y;(t; = 1) is censored rather than observed, we replace it with
a simulation from the model given available knowledge of the censoring process. Vari-
ation in the simulations is due to two factors: uncertainty in the imputation process
for censored y; and uncertainty in simulating E[Y;(t; = 0)], the counterfactual ex-
pected value of Y; for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched to ¢; = 0.

e In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

—

s Do il = 1) -V = 0,

where t; is a binary explanatory variable defining the treatment (¢; = 1) and control
(t; = 0) groups. When Y;(t; = 1) is censored rather than observed, we replace it with a
simulation from the model given available knowledge of the censoring process. Variation
in the simulations are due to two factors: wtainty in the imputation process for
censored y; and uncertainty in simulating Y;(¢; = 0), the counterfactual predicted value
of Y; for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ¢; = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(Surv(Y, C) ~ X, model = "lognorm", data), then

you may examine the available information in z. out by using names (z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

e From the zelig() output object z.out, you may extract:
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— coefficients: parameter estimates for the explanatory variables.
— icoef: parameter estimates for the intercept and o.
— var: Variance-covariance matrix.

— loglik: Vector containing the log-likelihood for the model and intercept only
(respectively).

— linear.predictors: the vector of x;(.

— df .residual: the residual degrees of freedom.

— df .null: the residual degrees of freedom for the null model.
— zelig.data: the input data frame if save.data = TRUE.

e Most of this may be conveniently summarized using summary(z.out). From summary(z.out),
you may additionally extract:

— table: the parameter estimates with their associated standard errors, p-values,
and t-statistics.

e From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation x x-observation (for more than one x-observation).
Available quantities are:

— qgi$ev: the simulated expected values for the specified values of x.

— qi$pr: the simulated predicted values drawn from the distribution defined by
()\i7 0) .

— qi$fd: the simulated first differences between the simulated expected values for
x and x1.

— gi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

— gi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

Contributors

The exponential function is part of the survival library by by Terry Therneau, ported to R
by Thomas Lumley. Advanced users may wish to refer to help(survfit) in the survival
library, and

Sample data are from

Kosuke Imai, Gary King, and Olivia Lau added Zelig functionality.



