32bpp_optimized.cpp

Go to the documentation of this file.
00001 /* $Id: 32bpp_optimized.cpp 18809 2010-01-15 16:41:15Z rubidium $ */
00002 
00003 /*
00004  * This file is part of OpenTTD.
00005  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
00006  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
00007  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
00008  */
00009 
00012 #include "../stdafx.h"
00013 #include "../zoom_func.h"
00014 #include "../core/math_func.hpp"
00015 #include "32bpp_optimized.hpp"
00016 
00017 static FBlitter_32bppOptimized iFBlitter_32bppOptimized;
00018 
00026 template <BlitterMode mode>
00027 inline void Blitter_32bppOptimized::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
00028 {
00029   const SpriteData *src = (const SpriteData *)bp->sprite;
00030 
00031   /* src_px : each line begins with uint32 n = 'number of bytes in this line',
00032    *          then n times is the Colour struct for this line */
00033   const Colour *src_px = (const Colour *)(src->data + src->offset[zoom][0]);
00034   /* src_n  : each line begins with uint32 n = 'number of bytes in this line',
00035    *          then interleaved stream of 'm' and 'n' channels. 'm' is remap,
00036    *          'n' is number of bytes with the same alpha channel class */
00037   const uint8  *src_n  = (const uint8  *)(src->data + src->offset[zoom][1]);
00038 
00039   /* skip upper lines in src_px and src_n */
00040   for (uint i = bp->skip_top; i != 0; i--) {
00041     src_px = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
00042     src_n += *(uint32 *)src_n;
00043   }
00044 
00045   /* skip lines in dst */
00046   uint32 *dst = (uint32 *)bp->dst + bp->top * bp->pitch + bp->left;
00047 
00048   /* store so we don't have to access it via bp everytime (compiler assumes pointer aliasing) */
00049   const byte *remap = bp->remap;
00050 
00051   for (int y = 0; y < bp->height; y++) {
00052     /* next dst line begins here */
00053     uint32 *dst_ln = dst + bp->pitch;
00054 
00055     /* next src line begins here */
00056     const Colour *src_px_ln = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
00057     src_px++;
00058 
00059     /* next src_n line begins here */
00060     const uint8 *src_n_ln = src_n + *(uint32 *)src_n;
00061     src_n += 4;
00062 
00063     /* we will end this line when we reach this point */
00064     uint32 *dst_end = dst + bp->skip_left;
00065 
00066     /* number of pixels with the same aplha channel class */
00067     uint n;
00068 
00069     while (dst < dst_end) {
00070       n = *src_n++;
00071 
00072       if (src_px->a == 0) {
00073         dst += n;
00074         src_px ++;
00075         src_n++;
00076       } else {
00077         if (dst + n > dst_end) {
00078           uint d = dst_end - dst;
00079           src_px += d;
00080           src_n += d;
00081 
00082           dst = dst_end - bp->skip_left;
00083           dst_end = dst + bp->width;
00084 
00085           n = min<uint>(n - d, (uint)bp->width);
00086           goto draw;
00087         }
00088         dst += n;
00089         src_px += n;
00090         src_n += n;
00091       }
00092     }
00093 
00094     dst -= bp->skip_left;
00095     dst_end -= bp->skip_left;
00096 
00097     dst_end += bp->width;
00098 
00099     while (dst < dst_end) {
00100       n = min<uint>(*src_n++, (uint)(dst_end - dst));
00101 
00102       if (src_px->a == 0) {
00103         dst += n;
00104         src_px++;
00105         src_n++;
00106         continue;
00107       }
00108 
00109       draw:;
00110 
00111       switch (mode) {
00112         case BM_COLOUR_REMAP:
00113           if (src_px->a == 255) {
00114             do {
00115               uint m = *src_n;
00116               /* In case the m-channel is zero, do not remap this pixel in any way */
00117               if (m == 0) {
00118                 *dst = src_px->data;
00119               } else {
00120                 uint r = remap[m];
00121                 if (r != 0) *dst = this->LookupColourInPalette(r);
00122               }
00123               dst++;
00124               src_px++;
00125               src_n++;
00126             } while (--n != 0);
00127           } else {
00128             do {
00129               uint m = *src_n;
00130               if (m == 0) {
00131                 *dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
00132               } else {
00133                 uint r = remap[m];
00134                 if (r != 0) *dst = ComposeColourPANoCheck(this->LookupColourInPalette(r), src_px->a, *dst);
00135               }
00136               dst++;
00137               src_px++;
00138               src_n++;
00139             } while (--n != 0);
00140           }
00141           break;
00142 
00143         case BM_TRANSPARENT:
00144           /* TODO -- We make an assumption here that the remap in fact is transparency, not some colour.
00145            *  This is never a problem with the code we produce, but newgrfs can make it fail... or at least:
00146            *  we produce a result the newgrf maker didn't expect ;) */
00147 
00148           /* Make the current colour a bit more black, so it looks like this image is transparent */
00149           src_n += n;
00150           if (src_px->a == 255) {
00151             src_px += n;
00152             do {
00153               *dst = MakeTransparent(*dst, 3, 4);
00154               dst++;
00155             } while (--n != 0);
00156           } else {
00157             do {
00158               *dst = MakeTransparent(*dst, (256 * 4 - src_px->a), 256 * 4);
00159               dst++;
00160               src_px++;
00161             } while (--n != 0);
00162           }
00163           break;
00164 
00165         default:
00166           if (src_px->a == 255) {
00167             /* faster than memcpy(), n is usually low */
00168             src_n += n;
00169             do {
00170               *dst = src_px->data;
00171               dst++;
00172               src_px++;
00173             } while (--n != 0);
00174           } else {
00175             src_n += n;
00176             do {
00177               *dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
00178               dst++;
00179               src_px++;
00180             } while (--n != 0);
00181           }
00182           break;
00183       }
00184     }
00185 
00186     dst = dst_ln;
00187     src_px = src_px_ln;
00188     src_n  = src_n_ln;
00189   }
00190 }
00191 
00199 void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
00200 {
00201   switch (mode) {
00202     default: NOT_REACHED();
00203     case BM_NORMAL:       Draw<BM_NORMAL>      (bp, zoom); return;
00204     case BM_COLOUR_REMAP: Draw<BM_COLOUR_REMAP>(bp, zoom); return;
00205     case BM_TRANSPARENT:  Draw<BM_TRANSPARENT> (bp, zoom); return;
00206   }
00207 }
00208 
00216 static const SpriteLoader::Sprite *ResizeSprite(const SpriteLoader::Sprite *sprite_src, ZoomLevel zoom)
00217 {
00218   SpriteLoader::Sprite *sprite = MallocT<SpriteLoader::Sprite>(1);
00219 
00220   if (zoom == ZOOM_LVL_NORMAL) {
00221     memcpy(sprite, sprite_src, sizeof(*sprite));
00222     uint size = sprite_src->height * sprite_src->width;
00223     sprite->data = MallocT<SpriteLoader::CommonPixel>(size);
00224     memcpy(sprite->data, sprite_src->data, size * sizeof(SpriteLoader::CommonPixel));
00225     return sprite;
00226   }
00227 
00228   sprite->height = UnScaleByZoom(sprite_src->height, zoom);
00229   sprite->width  = UnScaleByZoom(sprite_src->width,  zoom);
00230   sprite->x_offs = UnScaleByZoom(sprite_src->x_offs, zoom);
00231   sprite->y_offs = UnScaleByZoom(sprite_src->y_offs, zoom);
00232 
00233   uint size = sprite->height * sprite->width;
00234   SpriteLoader::CommonPixel *dst = sprite->data = CallocT<SpriteLoader::CommonPixel>(size);
00235 
00236   const SpriteLoader::CommonPixel *src = (SpriteLoader::CommonPixel *)sprite_src->data;
00237   const SpriteLoader::CommonPixel *src_end = src + sprite_src->height * sprite_src->width;
00238 
00239   uint scaled_1 = ScaleByZoom(1, zoom);
00240 
00241   for (uint y = 0; y < sprite->height; y++) {
00242     if (src >= src_end) src = src_end - sprite_src->width;
00243 
00244     const SpriteLoader::CommonPixel *src_ln = src + sprite_src->width * scaled_1;
00245     for (uint x = 0; x < sprite->width; x++) {
00246       if (src >= src_ln) src = src_ln - 1;
00247       *dst = *src;
00248       dst++;
00249       src += scaled_1;
00250     }
00251 
00252     src = src_ln;
00253   }
00254 
00255   return sprite;
00256 }
00257 
00258 Sprite *Blitter_32bppOptimized::Encode(SpriteLoader::Sprite *sprite, Blitter::AllocatorProc *allocator)
00259 {
00260   /* streams of pixels (a, r, g, b channels)
00261    *
00262    * stored in separated stream so data are always aligned on 4B boundary */
00263   Colour *dst_px_orig[ZOOM_LVL_COUNT];
00264 
00265   /* interleaved stream of 'm' channel and 'n' channel
00266    * 'n' is number if following pixels with the same alpha channel class
00267    * there are 3 classes: 0, 255, others
00268    *
00269    * it has to be stored in one stream so fewer registers are used -
00270    * x86 has problems with register allocation even with this solution */
00271   uint8  *dst_n_orig[ZOOM_LVL_COUNT];
00272 
00273   /* lengths of streams */
00274   uint32 lengths[ZOOM_LVL_COUNT][2];
00275 
00276   for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
00277     const SpriteLoader::Sprite *src_orig = ResizeSprite(sprite, z);
00278 
00279     uint size = src_orig->height * src_orig->width;
00280 
00281     dst_px_orig[z] = CallocT<Colour>(size + src_orig->height * 2);
00282     dst_n_orig[z]  = CallocT<uint8>(size * 2 + src_orig->height * 4 * 2);
00283 
00284     uint32 *dst_px_ln = (uint32 *)dst_px_orig[z];
00285     uint32 *dst_n_ln  = (uint32 *)dst_n_orig[z];
00286 
00287     const SpriteLoader::CommonPixel *src = (const SpriteLoader::CommonPixel *)src_orig->data;
00288 
00289     for (uint y = src_orig->height; y > 0; y--) {
00290       Colour *dst_px = (Colour *)(dst_px_ln + 1);
00291       uint8 *dst_n = (uint8 *)(dst_n_ln + 1);
00292 
00293       uint8 *dst_len = dst_n++;
00294 
00295       uint last = 3;
00296       int len = 0;
00297 
00298       for (uint x = src_orig->width; x > 0; x--) {
00299         uint8 a = src->a;
00300         uint t = a > 0 && a < 255 ? 1 : a;
00301 
00302         if (last != t || len == 255) {
00303           if (last != 3) {
00304             *dst_len = len;
00305             dst_len = dst_n++;
00306           }
00307           len = 0;
00308         }
00309 
00310         last = t;
00311         len++;
00312 
00313         if (a != 0) {
00314           dst_px->a = a;
00315           *dst_n = src->m;
00316           if (src->m != 0) {
00317             /* Pre-convert the mapping channel to a RGB value */
00318             uint32 colour = this->LookupColourInPalette(src->m);
00319             dst_px->r = GB(colour, 16, 8);
00320             dst_px->g = GB(colour, 8,  8);
00321             dst_px->b = GB(colour, 0,  8);
00322           } else {
00323             dst_px->r = src->r;
00324             dst_px->g = src->g;
00325             dst_px->b = src->b;
00326           }
00327           dst_px++;
00328           dst_n++;
00329         } else if (len == 1) {
00330           dst_px++;
00331           *dst_n = src->m;
00332           dst_n++;
00333         }
00334 
00335         src++;
00336       }
00337 
00338       if (last != 3) {
00339         *dst_len = len;
00340       }
00341 
00342       dst_px = (Colour *)AlignPtr(dst_px, 4);
00343       dst_n  = (uint8 *)AlignPtr(dst_n, 4);
00344 
00345       *dst_px_ln = (uint8 *)dst_px - (uint8 *)dst_px_ln;
00346       *dst_n_ln  = (uint8 *)dst_n  - (uint8 *)dst_n_ln;
00347 
00348       dst_px_ln = (uint32 *)dst_px;
00349       dst_n_ln =  (uint32 *)dst_n;
00350     }
00351 
00352     lengths[z][0] = (byte *)dst_px_ln - (byte *)dst_px_orig[z]; // all are aligned to 4B boundary
00353     lengths[z][1] = (byte *)dst_n_ln  - (byte *)dst_n_orig[z];
00354 
00355     free(src_orig->data);
00356     free((void *)src_orig);
00357   }
00358 
00359   uint len = 0; // total length of data
00360   for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
00361     len += lengths[z][0] + lengths[z][1];
00362   }
00363 
00364   Sprite *dest_sprite = (Sprite *)allocator(sizeof(*dest_sprite) + sizeof(SpriteData) + len);
00365 
00366   dest_sprite->height = sprite->height;
00367   dest_sprite->width  = sprite->width;
00368   dest_sprite->x_offs = sprite->x_offs;
00369   dest_sprite->y_offs = sprite->y_offs;
00370 
00371   SpriteData *dst = (SpriteData *)dest_sprite->data;
00372 
00373   for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
00374     dst->offset[z][0] = z == ZOOM_LVL_BEGIN ? 0 : lengths[z - 1][1] + dst->offset[z - 1][1];
00375     dst->offset[z][1] = lengths[z][0] + dst->offset[z][0];
00376 
00377     memcpy(dst->data + dst->offset[z][0], dst_px_orig[z], lengths[z][0]);
00378     memcpy(dst->data + dst->offset[z][1], dst_n_orig[z],  lengths[z][1]);
00379 
00380     free(dst_px_orig[z]);
00381     free(dst_n_orig[z]);
00382   }
00383 
00384   return dest_sprite;
00385 }

Generated on Sat Nov 20 20:59:01 2010 for OpenTTD by  doxygen 1.6.1