
Babel

Code

Version 26.1

2026/01/18

Javier Bezos
Current maintainer

Johannes L. Braams
Original author

Localization and

internationalization

Unicode

TEX

LuaTEX

pdfTEX

XeTEX

Contents

1 Identification and loading of required files 3

2 locale directory 3

3 Tools 3

3.1 A few core definitions . 8

3.2 LATEX: babel.sty (start) . 8

3.3 base . 10

3.4 key=value options and other general option 10

3.5 Post-process some options . 12

3.6 Plain: babel.def (start) . 13

4 babel.sty and babel.def (common) 13

4.1 Selecting the language . 15

4.2 Errors . 23

4.3 More on selection . 24

4.4 Short tags . 25

4.5 Compatibility with language.def . 25

4.6 Hooks . 26

4.7 Setting up language files . 27

4.8 Shorthands . 29

4.9 Language attributes . 38

4.10 Support for saving and redefining macros 40

4.11 French spacing . 41

4.12 Hyphens . 42

4.13 Multiencoding strings . 44

4.14 Tailor captions . 48

4.15 Making glyphs available . 49

4.15.1 Quotation marks . 49

4.15.2 Letters . 51

4.15.3 Shorthands for quotation marks 52

4.15.4 Umlauts and tremas . 52

4.16 Layout . 54

4.17 Load engine specific macros . 54

4.18 Creating and modifying languages . 54

4.19 Main loop in ‘provide’ . 62

4.20 Processing keys in ini . 66

4.21 French spacing (again) . 72

4.22 Handle language system . 73

4.23 Numerals . 74

4.24 Casing . 75

4.25 Getting info . 76

4.26 BCP 47 related commands . 77

5 Adjusting the Babel behavior 78

5.1 Cross referencing macros . 80

5.2 Layout . 83

5.3 Marks . 84

5.4 Other packages . 85

5.4.1 ifthen . 85

5.4.2 varioref . 86

5.4.3 hhline . 86

5.5 Encoding and fonts . 87

5.6 Basic bidi support . 89

5.7 Local Language Configuration . 92

5.8 Language options . 92

1

6 The kernel of Babel 96

7 Error messages 96

8 Loading hyphenation patterns 100

9 luatex + xetex: common stuff 104

10 Hooks for XeTeX and LuaTeX 107

10.1 XeTeX . 107

10.2 Support for interchar . 109

10.3 Layout . 111

10.4 8-bit TeX . 113

10.5 LuaTeX . 113

10.6 Southeast Asian scripts . 120

10.7 CJK line breaking . 121

10.8 Arabic justification . 123

10.9 Common stuff . 128

10.10 Automatic fonts and ids switching . 128

10.11 Bidi . 135

10.12 Layout . 137

10.13 Lua: transforms . 147

10.14 Lua: Auto bidi with basic and basic-r . 157

11 Data for CJK 168

12 The ‘nil’ language 168

13 Calendars 169

13.1 Islamic . 170

13.2 Hebrew . 171

13.3 Persian . 175

13.4 Coptic and Ethiopic . 176

13.5 Julian . 176

13.6 Buddhist . 177

14 Support for Plain TEX (plain.def) 178

14.1 Not renaming hyphen.tex . 178

14.2 Emulating some LATEX features . 179

14.3 General tools . 179

14.4 Encoding related macros . 183

15 Acknowledgements 186

2

The babel package is being developed incrementally, which means parts of the code are under

development and therefore incomplete. Only documented features are considered complete. In other

words, use babel in real documents only as documented (except, of course, if you want to explore

and test them).

1. Identification and loading of required files

The babel package after unpacking consists of the following files:

babel.sty is the LATEX package, which set options and load language styles.

babel.def is loaded by Plain.

switch.def defines macros to set and switch languages (it loads part babel.def).

plain.def is not used, and just loads babel.def, for compatibility.

hyphen.cfg is the file to be used when generating the formats to load hyphenation patterns.

There some additional tex, def and lua files.

The babel installer extends docstrip with a few “pseudo-guards” to set “variables” used at

installation time. They are used with <@name@> at the appropriate places in the source code and

defined with either 〈〈name=value〉〉, or with a series of lines between 〈〈*name〉〉 and 〈〈/name〉〉. The
latter is cumulative (e.g., withMore package options). That brings a little bit of literate programming.

The guards <-name> and <+name> have been redefined, too. See babel.ins for further details.

2. locale directory

A required component of babel is a set of ini files with basic definitions for about 300 languages.

They are distributed as a separate zip file, not packed as dtx. Many of them are essentially finished

(except bugs and mistakes, of course). Some of them are still incomplete (but they will be usable), and

there are some omissions (e.g., there are no geographic areas in Spanish). Not all include LICR

variants.

babel-*.ini files contain the actual data; babel-*.tex files are basically proxies to the

corresponding ini files.

See Keys in ini files in the the babel site.

3. Tools

1 〈〈version=26.1〉〉
2 〈〈date=2026/01/18〉〉

Do not use the following macros in ldf files. They may change in the future. This applies

mainly to those recently added for replacing, trimming and looping. The older ones, like

\bbl@afterfi, will not change. We define some basic macros which just make the code cleaner.

\bbl@add is now used internally instead of \addto because of the unpredictable behavior of the

latter. Used in babel.def and in babel.sty, which means in LATEX is executed twice, but we need

them when defining options and babel.def cannot be load until options have been defined. This

does not hurt, but should be fixed somehow.

3 〈〈∗Basic macros〉〉 ≡
4 \bbl@trace{Basic macros}

5 \def\bbl@stripslash{\expandafter\@gobble\string}

6 \def\bbl@add#1#2{%

7 \bbl@ifunset{\bbl@stripslash#1}%

8 {\def#1{#2}}%

9 {\expandafter\def\expandafter#1\expandafter{#1#2}}}

10 \def\bbl@xin@{\@expandtwoargs\in@}

11 \def\bbl@carg#1#2{\expandafter#1\csname#2\endcsname}%

12 \def\bbl@ncarg#1#2#3{\expandafter#1\expandafter#2\csname#3\endcsname}%

13 \def\bbl@ccarg#1#2#3{%

14 \expandafter#1\csname#2\expandafter\endcsname\csname#3\endcsname}%

15 \def\bbl@csarg#1#2{\expandafter#1\csname bbl@#2\endcsname}%

16 \def\bbl@cs#1{\csname bbl@#1\endcsname}

17 \def\bbl@cl#1{\csname bbl@#1@\languagename\endcsname}

18 \def\bbl@loop#1#2#3{\bbl@@loop#1{#3}#2,\@nnil,}

19 \def\bbl@loopx#1#2{\expandafter\bbl@loop\expandafter#1\expandafter{#2}}

3

https://latex3.github.io/babel/guides/keys-in-ini-files.html

20 \def\bbl@@loop#1#2#3,{%

21 \ifx\@nnil#3\relax\else

22 \def#1{#3}#2\bbl@afterfi\bbl@@loop#1{#2}%

23 \fi}

24 \def\bbl@for#1#2#3{\bbl@loopx#1{#2}{\ifx#1\@empty\else#3\fi}}

\bbl@add@list This internal macro adds its second argument to a comma separated list in its first

argument. When the list is not defined yet (or empty), it will be initiated. It presumes expandable

character strings.

25 \def\bbl@add@list#1#2{%

26 \edef#1{%

27 \bbl@ifunset{\bbl@stripslash#1}%

28 {}%

29 {\ifx#1\@empty\else#1,\fi}%

30 #2}}

\bbl@afterelse

\bbl@afterfi Because the code that is used in the handling of active characters may need to look

ahead, we take extra care to ‘throw’ it over the \else and \fi parts of an \if-statement1. These

macros will break if another \if...\fi statement appears in one of the arguments and it is not

enclosed in braces.

31 \long\def\bbl@afterelse#1\else#2\fi{\fi#1}

32 \long\def\bbl@afterfi#1\fi{\fi#1}

\bbl@exp Now, just syntactical sugar, but it makes partial expansion of some code a lot more simple

and readable. Here \\ stands for \noexpand, \〈..〉 for \noexpand applied to a built macro name

(which does not define the macro if undefined to \relax, because it is created locally), and \[..] for

one-level expansion (where .. is the macro name without the backslash). The result may be followed

by extra arguments, if necessary.

33 \def\bbl@exp#1{%

34 \begingroup

35 \let\\\noexpand

36 \let\<\bbl@exp@en

37 \let\[\bbl@exp@ue

38 \edef\bbl@exp@aux{\endgroup#1}%

39 \bbl@exp@aux}

40 \def\bbl@exp@en#1>{\expandafter\noexpand\csname#1\endcsname}%

41 \def\bbl@exp@ue#1]{%

42 \unexpanded\expandafter\expandafter\expandafter{\csname#1\endcsname}}%

\bbl@trim The following piece of code is stolen (with some changes) from keyval, by David Carlisle. It

defines two macros: \bbl@trim and \bbl@trim@def. The first one strips the leading and trailing

spaces from the second argument and then applies the first argument (a macro, \toks@ and the like).

The second one, as its name suggests, defines the first argument as the stripped second argument.

43 \def\bbl@tempa#1{%

44 \long\def\bbl@trim##1##2{%

45 \futurelet\bbl@trim@a\bbl@trim@c##2\@nil\@nil#1\@nil\relax{##1}}%

46 \def\bbl@trim@c{%

47 \ifx\bbl@trim@a\@sptoken

48 \expandafter\bbl@trim@b

49 \else

50 \expandafter\bbl@trim@b\expandafter#1%

51 \fi}%

52 \long\def\bbl@trim@b#1##1 \@nil{\bbl@trim@i##1}}

53 \bbl@tempa{ }

54 \long\def\bbl@trim@i#1\@nil#2\relax#3{#3{#1}}

55 \long\def\bbl@trim@def#1{\bbl@trim{\def#1}}

1This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion Power Lemma” by

Sonja Maus.

4

\bbl@ifunset To check if a macro is defined, we create a new macro, which does the same as

\@ifundefined. However, in an ε-tex engine, it is based on \ifcsname, which is more efficient, and

does not waste memory. Defined inside a group, to avoid \ifcsname being implicitly set to \relax by

the \csname test.

56 \begingroup

57 \gdef\bbl@ifunset#1{%

58 \expandafter\ifx\csname#1\endcsname\relax

59 \expandafter\@firstoftwo

60 \else

61 \expandafter\@secondoftwo

62 \fi}

63 \bbl@ifunset{ifcsname}%

64 {}%

65 {\gdef\bbl@ifunset#1{%

66 \ifcsname#1\endcsname

67 \expandafter\ifx\csname#1\endcsname\relax

68 \bbl@afterelse\expandafter\@firstoftwo

69 \else

70 \bbl@afterfi\expandafter\@secondoftwo

71 \fi

72 \else

73 \expandafter\@firstoftwo

74 \fi}}

75 \endgroup

\bbl@ifblank A tool from url, by Donald Arseneau, which tests if a string is empty or space. The

companion macros tests if a macro is defined with some ‘real’ value, i.e., not \relax and not empty,

76 \def\bbl@ifblank#1{%

77 \bbl@ifblank@i#1\@nil\@nil\@secondoftwo\@firstoftwo\@nil}

78 \long\def\bbl@ifblank@i#1#2\@nil#3#4#5\@nil{#4}

79 \def\bbl@ifset#1#2#3{%

80 \bbl@ifunset{#1}{#3}{\bbl@exp{\\\bbl@ifblank{\@nameuse{#1}}}{#3}{#2}}}

For each element in the comma separated <key>=<value> list, execute <code> with #1 and #2 as the

key and the value of current item (trimmed). In addition, the item is passed verbatim as #3. With the

<key> alone, it passes \@empty as value (i.e., the macro thus named, not an empty argument, which is

what you get with <key>= and no value).

81 \def\bbl@forkv#1#2{%

82 \def\bbl@kvcmd##1##2##3{#2}%

83 \bbl@kvnext#1,\@nil,}

84 \def\bbl@kvnext#1,{%

85 \ifx\@nil#1\relax\else

86 \bbl@ifblank{#1}{}{\bbl@forkv@eq#1=\@empty=\@nil{#1}}%

87 \expandafter\bbl@kvnext

88 \fi}

89 \def\bbl@forkv@eq#1=#2=#3\@nil#4{%

90 \bbl@trim@def\bbl@forkv@a{#1}%

91 \bbl@trim{\expandafter\bbl@kvcmd\expandafter{\bbl@forkv@a}}{#2}{#4}}

A for loop. Each item (trimmed) is #1. It cannot be nested (it’s doable, but we don’t need it).

92 \def\bbl@vforeach#1#2{%

93 \def\bbl@forcmd##1{#2}%

94 \bbl@fornext#1,\@nil,}

95 \def\bbl@fornext#1,{%

96 \ifx\@nil#1\relax\else

97 \bbl@ifblank{#1}{}{\bbl@trim\bbl@forcmd{#1}}%

98 \expandafter\bbl@fornext

99 \fi}

100 \def\bbl@foreach#1{\expandafter\bbl@vforeach\expandafter{#1}}

Some code should be executed once. The first argument is a flag.

101 \global\let\bbl@done\@empty

5

102 \def\bbl@once#1#2{%

103 \bbl@xin@{,#1,}{,\bbl@done,}%

104 \ifin@\else

105 #2%

106 \xdef\bbl@done{\bbl@done,#1,}%

107 \fi}

108 % \end{macrode}

109 %

110 % \macro{\bbl@replace}

111 %

112 % Returns implicitly |\toks@| with the modified string.

113 %

114 % \begin{macrocode}

115 \def\bbl@replace#1#2#3{% in #1 -> repl #2 by #3

116 \toks@{}%

117 \def\bbl@replace@aux##1#2##2#2{%

118 \ifx\bbl@nil##2%

119 \toks@\expandafter{\the\toks@##1}%

120 \else

121 \toks@\expandafter{\the\toks@##1#3}%

122 \bbl@afterfi

123 \bbl@replace@aux##2#2%

124 \fi}%

125 \expandafter\bbl@replace@aux#1#2\bbl@nil#2%

126 \edef#1{\the\toks@}}

An extension to the previous macro. It takes into account the parameters, and it is string based (i.e.,

if you replace elax by ho, then \relax becomes \rho). No checking is done at all, because it is not a

general purpose macro, and it is used by babel only when it works (an example where it does not

work is in \bbl@TG@@date, and also fails if there are macros with spaces, because they are

retokenized). It may change! (or even merged with \bbl@replace; I’m not sure checking the

replacement is really necessary or just paranoia).

127 \ifx\detokenize\@undefined\else % Unused macros if old Plain TeX

128 \bbl@exp{\def\\\bbl@parsedef##1\detokenize{macro:}}#2->#3\relax{%

129 \def\bbl@tempa{#1}%

130 \def\bbl@tempb{#2}%

131 \def\bbl@tempe{#3}}

132 \def\bbl@sreplace#1#2#3{%

133 \begingroup

134 \expandafter\bbl@parsedef\meaning#1\relax

135 \def\bbl@tempc{#2}%

136 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%

137 \def\bbl@tempd{#3}%

138 \edef\bbl@tempd{\expandafter\strip@prefix\meaning\bbl@tempd}%

139 \bbl@xin@{\bbl@tempc}{\bbl@tempe}% If not in macro, do nothing

140 \ifin@

141 \bbl@exp{\\\bbl@replace\\\bbl@tempe{\bbl@tempc}{\bbl@tempd}}%

142 \def\bbl@tempc{% Expanded an executed below as 'uplevel'

143 \\\makeatletter % "internal" macros with @ are assumed

144 \\\scantokens{%

145 \bbl@tempa\\\@namedef{\bbl@stripslash#1}\bbl@tempb{\bbl@tempe}%

146 \noexpand\noexpand}%

147 \catcode64=\the\catcode64\relax}% Restore @

148 \else

149 \let\bbl@tempc\@empty % Not \relax

150 \fi

151 \bbl@exp{% For the 'uplevel' assignments

152 \endgroup

153 \bbl@tempc}} % empty or expand to set #1 with changes

154 \fi

Two further tools. \bbl@ifsamestring first expand its arguments and then compare their

expansion (sanitized, so that the catcodes do not matter). \bbl@engine takes the following values: 0

is pdfTEX, 1 is luatex, and 2 is xetex. You may use the latter it in your language style if you want.

6

155 \def\bbl@ifsamestring#1#2{%

156 \begingroup

157 \protected@edef\bbl@tempb{#1}%

158 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

159 \protected@edef\bbl@tempc{#2}%

160 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%

161 \ifx\bbl@tempb\bbl@tempc

162 \aftergroup\@firstoftwo

163 \else

164 \aftergroup\@secondoftwo

165 \fi

166 \endgroup}

167 \chardef\bbl@engine=%

168 \ifx\directlua\@undefined

169 \ifx\XeTeXinputencoding\@undefined

170 \z@

171 \else

172 \tw@

173 \fi

174 \else

175 \@ne

176 \fi

A somewhat hackish tool (hence its name) to avoid spurious spaces in some contexts.

177 \def\bbl@bsphack{%

178 \ifhmode

179 \hskip\z@skip

180 \def\bbl@esphack{\loop\ifdim\lastskip>\z@\unskip\repeat\unskip}%

181 \else

182 \let\bbl@esphack\@empty

183 \fi}

Another hackish tool, to apply case changes inside a protected macros. It’s based on the internal

\let’s made by \MakeUppercase and \MakeLowercase between things like \oe and \OE.

184 \def\bbl@cased{%

185 \ifx\oe\OE

186 \expandafter\in@\expandafter

187 {\expandafter\OE\expandafter}\expandafter{\oe}%

188 \ifin@

189 \bbl@afterelse\expandafter\MakeUppercase

190 \else

191 \bbl@afterfi\expandafter\MakeLowercase

192 \fi

193 \else

194 \expandafter\@firstofone

195 \fi}

The following adds some code to \extras... both before and after, while avoiding doing it twice.

It’s somewhat convoluted, to deal with #’s. Used to deal with alph, Alph and frenchspacing when

there are already changes (with \babel@save).

196 \def\bbl@extras@wrap#1#2#3{% 1:in-test, 2:before, 3:after

197 \toks@\expandafter\expandafter\expandafter{%

198 \csname extras\languagename\endcsname}%

199 \bbl@exp{\\\in@{#1}{\the\toks@}}%

200 \ifin@\else

201 \@temptokena{#2}%

202 \edef\bbl@tempc{\the\@temptokena\the\toks@}%

203 \toks@\expandafter{\bbl@tempc#3}%

204 \expandafter\edef\csname extras\languagename\endcsname{\the\toks@}%

205 \fi}

206 〈〈/Basic macros〉〉

Some files identify themselves with a LATEX macro. The following code is placed before them to

define (and then undefine) if not in LATEX.

7

207 〈〈∗Make sure ProvidesFile is defined〉〉 ≡
208 \ifx\ProvidesFile\@undefined

209 \def\ProvidesFile#1[#2 #3 #4]{%

210 \wlog{File: #1 #4 #3 <#2>}%

211 \let\ProvidesFile\@undefined}

212 \fi

213 〈〈/Make sure ProvidesFile is defined〉〉

3.1. A few core definitions

\language Just for compatibility, for not to touch hyphen.cfg.

214 〈〈∗Define core switching macros〉〉 ≡
215 \ifx\language\@undefined

216 \csname newcount\endcsname\language

217 \fi

218 〈〈/Define core switching macros〉〉

\last@language Another counter is used to keep track of the allocated languages. TEX and LATEX

reserves for this purpose the count 19.

\addlanguage This macro was introduced for TEX< 2. Preserved for compatibility.

219 〈〈∗Define core switching macros〉〉 ≡
220 \countdef\last@language=19

221 \def\addlanguage{\csname newlanguage\endcsname}

222 〈〈/Define core switching macros〉〉

Now we make sure all required files are loaded. When the command \AtBeginDocument doesn’t

exist we assume that we are dealing with a plain-based format. In that case the file plain.def is

needed (which also defines \AtBeginDocument, and therefore it is not loaded twice). We need the

first part when the format is created, and \orig@dump is used as a flag. Otherwise, we need to use the

second part, so \orig@dump is not defined (plain.def undefines it).

Check if the current version of switch.def has been previously loaded (mainly, hyphen.cfg). If

not, load it now. We cannot load babel.def here because we first need to declare and process the

package options.

3.2. LATEX: babel.sty (start)

Here starts the style file for LATEX. It also takes care of a number of compatibility issues with other

packages.

223 〈∗package〉
224 \NeedsTeXFormat{LaTeX2e}

225 \ProvidesPackage{babel}%

226 [<@date@> v<@version@>

227 The multilingual framework for LuaLaTeX, pdfLaTeX and XeLaTeX]

Start with some “private” debugging tools, and then define macros for errors. The global lua ‘space’

Babel is declared here, too (inside the test for debug).

228 \@ifpackagewith{babel}{debug}

229 {\providecommand\bbl@trace[1]{\message{^^J[#1]}}%

230 \let\bbl@debug\@firstofone

231 \ifx\directlua\@undefined\else

232 \directlua{

233 Babel = Babel or {}

234 Babel.debug = true }%

235 \input{babel-debug.tex}%

236 \fi}

237 {\providecommand\bbl@trace[1]{}%

238 \let\bbl@debug\@gobble

239 \ifx\directlua\@undefined\else

240 \directlua{

241 Babel = Babel or {}

242 Babel.debug = false }%

8

243 \fi}

244 % Temporary:

245 \newif\ifBabelDebugGerman

246 \@ifpackagewith{babel}{debug-german}

247 {\BabelDebugGermantrue}

248 {\BabelDebugGermanfalse}

Macros to deal with errors, warnings, etc. Errors are stored in a separate file.

249 \def\bbl@error#1{% Implicit #2#3#4

250 \begingroup

251 \catcode`\\=0 \catcode`\==12 \catcode`\`=12

252 \input errbabel.def

253 \endgroup

254 \bbl@error{#1}}

255 \def\bbl@warning#1{%

256 \begingroup

257 \def\\{\MessageBreak}%

258 \PackageWarning{babel}{#1}%

259 \endgroup}

260 \def\bbl@infowarn#1{%

261 \begingroup

262 \def\\{\MessageBreak}%

263 \PackageNote{babel}{#1}%

264 \endgroup}

265 \def\bbl@info#1{%

266 \begingroup

267 \def\\{\MessageBreak}%

268 \PackageInfo{babel}{#1}%

269 \endgroup}

Many of the following options don’t do anything themselves, they are just defined in order to make

it possible for babel and language definition files to check if one of them was specified by the user.

But first, include here the Basic macros defined above.

270 <@Basic macros@>

271 \@ifpackagewith{babel}{silent}

272 {\let\bbl@info\@gobble

273 \let\bbl@infowarn\@gobble

274 \let\bbl@warning\@gobble}

275 {}

276 %

277 \def\AfterBabelLanguage#1{%

278 \global\expandafter\bbl@add\csname#1.ldf-h@@k\endcsname}%

If the format created a list of loaded languages (in \bbl@languages), get the name of the 0-th to

show the actual language used. Also available with base, because it just shows info.

279 \ifx\bbl@languages\@undefined\else

280 \begingroup

281 \catcode`\^^I=12

282 \@ifpackagewith{babel}{showlanguages}{%

283 \begingroup

284 \def\bbl@elt#1#2#3#4{\wlog{#2^^I#1^^I#3^^I#4}}%

285 \wlog{<*languages>}%

286 \bbl@languages

287 \wlog{</languages>}%

288 \endgroup}{}

289 \endgroup

290 \def\bbl@elt#1#2#3#4{%

291 \ifnum#2=\z@

292 \gdef\bbl@nulllanguage{#1}%

293 \def\bbl@elt##1##2##3##4{}%

294 \fi}%

295 \bbl@languages

296 \fi%

9

3.3. base

The first ‘real’ option to be processed is base, which set the hyphenation patterns then resets

ver@babel.sty so that LATEX forgets about the first loading. After a subset of babel.def has been

loaded (the old switch.def) and \AfterBabelLanguage defined, it exits.

Now the base option. With it we can define (and load, with luatex) hyphenation patterns, even if

we are not interested in the rest of babel.

297 \bbl@trace{Defining option 'base'}

298 \@ifpackagewith{babel}{base}{%

299 \let\bbl@onlyswitch\@empty

300 \let\bbl@provide@locale\relax

301 \input babel.def

302 \let\bbl@onlyswitch\@undefined

303 \ifx\directlua\@undefined

304 \DeclareOption*{\bbl@patterns{\CurrentOption}}%

305 \else

306 \input luababel.def

307 \DeclareOption*{\bbl@patterns@lua{\CurrentOption}}%

308 \fi

309 \DeclareOption{base}{}%

310 \DeclareOption{showlanguages}{}%

311 \ProcessOptions

312 \global\expandafter\let\csname opt@babel.sty\endcsname\relax

313 \global\expandafter\let\csname ver@babel.sty\endcsname\relax

314 \global\let\@ifl@ter@@\@ifl@ter

315 \def\@ifl@ter#1#2#3#4#5{\global\let\@ifl@ter\@ifl@ter@@}%

316 \endinput}{}%

3.4. key=value options and other general option

The following macros extract language modifiers, and only real package options are kept in the

option list. Modifiers are saved and assigned to \BabelModifiers at \bbl@load@language; when no

modifiers have been given, the former is \relax.

317 \bbl@trace{key=value and another general options}

318 \bbl@csarg\let{tempa\expandafter}\csname opt@babel.sty\endcsname

319 \def\bbl@tempb#1.#2{% Removes trailing dot

320 #1\ifx\@empty#2\else,\bbl@afterfi\bbl@tempb#2\fi}%

321 \def\bbl@tempe#1=#2\@@{%

322 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}}

323 \def\bbl@tempd#1.#2\@nnil{%

324 \ifx\@empty#2%

325 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%

326 \else

327 \in@{,provide=}{,#1}%

328 \ifin@

329 \edef\bbl@tempc{%

330 \ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1.\bbl@tempb#2}%

331 \else

332 \in@{$modifiers$}{$#1$}%

333 \ifin@

334 \bbl@tempe#2\@@

335 \else

336 \in@{=}{#1}%

337 \ifin@

338 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1.#2}%

339 \else

340 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%

341 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}%

342 \fi

343 \fi

344 \fi

345 \fi}

346 \let\bbl@tempc\@empty

10

347 \bbl@foreach\bbl@tempa{\bbl@tempd#1.\@empty\@nnil}

348 \expandafter\let\csname opt@babel.sty\endcsname\bbl@tempc

The next option tells babel to leave shorthand characters active at the end of processing the

package. This is not the default as it can cause problems with other packages, but for those who want

to use the shorthand characters in the preamble of their documents this can help.

349 \DeclareOption{KeepShorthandsActive}{}

350 \DeclareOption{activeacute}{}

351 \DeclareOption{activegrave}{}

352 \DeclareOption{debug}{}

353 \DeclareOption{debug-german}{} % Temporary

354 \DeclareOption{noconfigs}{}

355 \DeclareOption{showlanguages}{}

356 \DeclareOption{silent}{}

357 \DeclareOption{shorthands=off}{\bbl@tempa shorthands=\bbl@tempa}

358 \chardef\bbl@iniflag\z@

359 \DeclareOption{provide=*}{\chardef\bbl@iniflag\@ne} % main = 1

360 \DeclareOption{provide+=*}{\chardef\bbl@iniflag\tw@} % second = 2

361 \DeclareOption{provide*=*}{\chardef\bbl@iniflag\thr@@} % second + main

362 \chardef\bbl@ldfflag\z@

363 \DeclareOption{provide=!}{\chardef\bbl@ldfflag\@ne} % main = 1

364 \DeclareOption{provide+=!}{\chardef\bbl@ldfflag\tw@} % second = 2

365 \DeclareOption{provide*=!}{\chardef\bbl@ldfflag\thr@@} % second + main

366 % Don't use. Experimental.

367 \newif\ifbbl@single

368 \DeclareOption{selectors=off}{\bbl@singletrue}

369 <@More package options@>

Handling of package options is done in three passes. (I [JBL] am not very happy with the idea,

anyway.) The first one processes options which has been declared above or follow the syntax

〈key〉=〈value〉, the second one loads the requested languages, except the main one if set with the key

main, and the third one loads the latter. First, we “flag” valid keys with a nil value.

370 \let\bbl@opt@shorthands\@nnil

371 \let\bbl@opt@config\@nnil

372 \let\bbl@opt@main\@nnil

373 \let\bbl@opt@headfoot\@nnil

374 \let\bbl@opt@layout\@nnil

375 \let\bbl@opt@provide\@nnil

The following tool is defined temporarily to store the values of options.

376 \def\bbl@tempa#1=#2\bbl@tempa{%

377 \bbl@csarg\ifx{opt@#1}\@nnil

378 \bbl@csarg\edef{opt@#1}{#2}%

379 \else

380 \bbl@error{bad-package-option}{#1}{#2}{}%

381 \fi}

Now the option list is processed, taking into account only currently declared options (including

those declared with a =), and 〈key〉=〈value〉 options (the former take precedence). Unrecognized

options are saved in \bbl@language@opts, because they are language options.

382 \let\bbl@language@opts\@empty

383 \DeclareOption*{%

384 \bbl@xin@{\string=}{\CurrentOption}%

385 \ifin@

386 \expandafter\bbl@tempa\CurrentOption\bbl@tempa

387 \else

388 \bbl@add@list\bbl@language@opts{\CurrentOption}%

389 \fi}

Now we finish the first pass (and start over).

390 \ProcessOptions*

11

3.5. Post-process some options

391 \ifx\bbl@opt@provide\@nnil

392 \let\bbl@opt@provide\@empty % %%% MOVE above

393 \else

394 \chardef\bbl@iniflag\@ne

395 \bbl@exp{\\\bbl@forkv{\@nameuse{@raw@opt@babel.sty}}}{%

396 \in@{,provide,}{,#1,}%

397 \ifin@

398 \def\bbl@opt@provide{#2}%

399 \fi}

400 \fi

If there is no shorthands=〈chars〉, the original babelmacros are left untouched, but if there is,

these macros are wrapped (in babel.def) to define only those given.

A bit of optimization: if there is no shorthands=, then \bbl@ifshorthand is always true, and it is

always false if shorthands is empty. Also, some code makes sense only with shorthands=....

401 \bbl@trace{Conditional loading of shorthands}

402 \def\bbl@sh@string#1{%

403 \ifx#1\@empty\else

404 \ifx#1t\string~%

405 \else\ifx#1c\string,%

406 \else\string#1%

407 \fi\fi

408 \expandafter\bbl@sh@string

409 \fi}

410 \ifx\bbl@opt@shorthands\@nnil

411 \def\bbl@ifshorthand#1#2#3{#2}%

412 \else\ifx\bbl@opt@shorthands\@empty

413 \def\bbl@ifshorthand#1#2#3{#3}%

414 \else

The following macro tests if a shorthand is one of the allowed ones.

415 \def\bbl@ifshorthand#1{%

416 \bbl@xin@{\string#1}{\bbl@opt@shorthands}%

417 \ifin@

418 \expandafter\@firstoftwo

419 \else

420 \expandafter\@secondoftwo

421 \fi}

Wemake sure all chars in the string are ‘other’, with the help of an auxiliary macro defined above

(which also zaps spaces).

422 \edef\bbl@opt@shorthands{%

423 \expandafter\bbl@sh@string\bbl@opt@shorthands\@empty}%

The following is ignored with shorthands=off, since it is intended to take some additional actions

for certain chars.

424 \bbl@ifshorthand{'}%

425 {\PassOptionsToPackage{activeacute}{babel}}{}

426 \bbl@ifshorthand{`}%

427 {\PassOptionsToPackage{activegrave}{babel}}{}

428 \fi\fi

With headfoot=lang we can set the language used in heads/feet. For example, in babel/3796 just

add headfoot=english. It misuses \@resetactivechars, but seems to work.

429 \ifx\bbl@opt@headfoot\@nnil\else

430 \g@addto@macro\@resetactivechars{%

431 \set@typeset@protect

432 \expandafter\select@language@x\expandafter{\bbl@opt@headfoot}%

433 \let\protect\noexpand}

434 \fi

For the option safe we use a different approach – \bbl@opt@safe says which macros are redefined

(B for bibs and R for refs). By default, both are currently set, but in a future release it will be set to

none.

435 \ifx\bbl@opt@safe\@undefined

12

436 \def\bbl@opt@safe{BR}

437 % \let\bbl@opt@safe\@empty % Pending of \cite

438 \fi

For layout an auxiliary macro is provided, available for packages and language styles.

Optimization: if there is no layout, just do nothing.

439 \bbl@trace{Defining IfBabelLayout}

440 \ifx\bbl@opt@layout\@nnil

441 \newcommand\IfBabelLayout[3]{#3}%

442 \else

443 \bbl@exp{\\\bbl@forkv{\@nameuse{@raw@opt@babel.sty}}}{%

444 \in@{,layout,}{,#1,}%

445 \ifin@

446 \def\bbl@opt@layout{#2}%

447 \bbl@replace\bbl@opt@layout{ }{.}%

448 \fi}

449 \newcommand\IfBabelLayout[1]{%

450 \@expandtwoargs\in@{.#1.}{.\bbl@opt@layout.}%

451 \ifin@

452 \expandafter\@firstoftwo

453 \else

454 \expandafter\@secondoftwo

455 \fi}

456 \fi

457 〈/package〉

3.6. Plain: babel.def (start)

Because of the way docstrip works, we need to insert some code for Plain here. However, the tools

provided by the babel installer for literate programming makes this section a short interlude,

because the actual code is below, tagged as Emulate LaTeX.

First, exit immediately if previouly loaded.

458 〈∗core〉
459 \ifx\ldf@quit\@undefined\else

460 \endinput\fi % Same line!

461 <@Make sure ProvidesFile is defined@>

462 \ProvidesFile{babel.def}[<@date@> v<@version@> Babel common definitions]

463 \ifx\AtBeginDocument\@undefined

464 <@Emulate LaTeX@>

465 \fi

466 <@Basic macros@>

467 〈/core〉

That is all for the moment. Now follows some common stuff, for both Plain and LATEX. After it, we

will resume the LATEX-only stuff.

4. babel.sty and babel.def (common)

468 〈∗package | core〉
469 \def\bbl@version{<@version@>}

470 \def\bbl@date{<@date@>}

471 <@Define core switching macros@>

\adddialect The macro \adddialect can be used to add the name of a dialect or variant language, for

which an already defined hyphenation table can be used.

472 \def\adddialect#1#2{%

473 \global\chardef#1#2\relax

474 \bbl@usehooks{adddialect}{{#1}{#2}}%

475 \begingroup

476 \count@#1\relax

477 \def\bbl@elt##1##2##3##4{%

478 \ifnum\count@=##2\relax

479 \edef\bbl@tempa{\expandafter\@gobbletwo\string#1}%

480 \bbl@info{Hyphen rules for '\expandafter\@gobble\bbl@tempa'

13

481 set to \expandafter\string\csname l@##1\endcsname\\%

482 (\string\language\the\count@). Reported}%

483 \def\bbl@elt####1####2####3####4{}%

484 \fi}%

485 \bbl@cs{languages}%

486 \endgroup}

\bbl@iflanguage executes code only if the language l@ exists. Otherwise raises an error.

The argument of \bbl@fixname has to be a macro name, as it may get “fixed” if casing (lc/uc) is

wrong. It’s an attempt to fix a long-standing bug when \foreignlanguage and the like appear in a

\MakeXXXcase. However, a lowercase form is not imposed to improve backward compatibility

(perhaps you defined a language named MYLANG, but unfortunately mixed case names cannot be

trapped). Note l@ is encapsulated, so that its case does not change.

487 \def\bbl@fixname#1{%

488 \begingroup

489 \def\bbl@tempe{l@}%

490 \edef\bbl@tempd{\noexpand\@ifundefined{\noexpand\bbl@tempe#1}}%

491 \bbl@tempd

492 {\lowercase\expandafter{\bbl@tempd}%

493 {\uppercase\expandafter{\bbl@tempd}%

494 \@empty

495 {\edef\bbl@tempd{\def\noexpand#1{#1}}%

496 \uppercase\expandafter{\bbl@tempd}}}%

497 {\edef\bbl@tempd{\def\noexpand#1{#1}}%

498 \lowercase\expandafter{\bbl@tempd}}}%

499 \@empty

500 \edef\bbl@tempd{\endgroup\def\noexpand#1{#1}}%

501 \bbl@tempd

502 \bbl@exp{\\\bbl@usehooks{languagename}{{\languagename}{#1}}}}

503 \def\bbl@iflanguage#1{%

504 \@ifundefined{l@#1}{\@nolanerr{#1}\@gobble}\@firstofone}

After a name has been ‘fixed’, the selectors will try to load the language. If even the fixed name is

not defined, will load it on the fly, either based on its name, or if activated, its BCP 47 code.

We first need a couple of macros for a simple BCP 47 look up. It also makes sure, with

\bbl@bcpcase, casing is the correct one, so that sr-latn-ba becomes fr-Latn-BA. Note #4may contain

some \@empty’s, but they are eventually removed.

\bbl@bcplookup either returns the found ini tag or it is \relax.

505 \def\bbl@bcpcase#1#2#3#4\@@#5{%

506 \ifx\@empty#3%

507 \uppercase{\def#5{#1#2}}%

508 \else

509 \uppercase{\def#5{#1}}%

510 \lowercase{\edef#5{#5#2#3#4}}%

511 \fi}

512 \def\bbl@bcplookup#1-#2-#3-#4\@@{%

513 \let\bbl@bcp\relax

514 \lowercase{\def\bbl@tempa{#1}}%

515 \ifx\@empty#2%

516 \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%

517 \else\ifx\@empty#3%

518 \bbl@bcpcase#2\@empty\@empty\@@\bbl@tempb

519 \IfFileExists{babel-\bbl@tempa-\bbl@tempb.ini}%

520 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempb}}%

521 {}%

522 \ifx\bbl@bcp\relax

523 \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%

524 \fi

525 \else

526 \bbl@bcpcase#2\@empty\@empty\@@\bbl@tempb

527 \bbl@bcpcase#3\@empty\@empty\@@\bbl@tempc

528 \IfFileExists{babel-\bbl@tempa-\bbl@tempb-\bbl@tempc.ini}%

529 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempb-\bbl@tempc}}%

530 {}%

14

531 \ifx\bbl@bcp\relax

532 \IfFileExists{babel-\bbl@tempa-\bbl@tempc.ini}%

533 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempc}}%

534 {}%

535 \fi

536 \ifx\bbl@bcp\relax

537 \IfFileExists{babel-\bbl@tempa-\bbl@tempc.ini}%

538 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempc}}%

539 {}%

540 \fi

541 \ifx\bbl@bcp\relax

542 \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%

543 \fi

544 \fi\fi}

545 \let\bbl@initoload\relax

\iflanguage Users might want to test (in a private package for instance) which language is currently

active. For this we provide a test macro, \iflanguage, that has three arguments. It checks whether

the first argument is a known language. If so, it compares the first argument with the value of

\language. Then, depending on the result of the comparison, it executes either the second or the

third argument.

546 \def\iflanguage#1{%

547 \bbl@iflanguage{#1}{%

548 \ifnum\csname l@#1\endcsname=\language

549 \expandafter\@firstoftwo

550 \else

551 \expandafter\@secondoftwo

552 \fi}}

4.1. Selecting the language

\selectlanguage It checks whether the language is already defined before it performs its actual task,

which is to update \language and activate language-specific definitions.

553 \let\bbl@select@type\z@

554 \edef\selectlanguage{%

555 \noexpand\protect

556 \expandafter\noexpand\csname selectlanguage \endcsname}

Because the command \selectlanguage could be used in a moving argument it expands to

\protect\selectlanguage . Therefore, we have to make sure that a macro \protect exists. If it

doesn’t it is \let to \relax.

557 \ifx\@undefined\protect\let\protect\relax\fi

The following definition is preserved for backwards compatibility (e.g., arabi, koma). It is related to

a trick for 2.09, now discarded.

558 \let\xstring\string

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table of contents etc.

in the correct language environment.

\bbl@pop@language But when the language change happens inside a group the end of the group

doesn’t write anything to the auxiliary files. Therefore we need TEX’s aftergroupmechanism to help

us. The command \aftergroup stores the token immediately following it to be executed when the

current group is closed. So we define a temporary control sequence \bbl@pop@language to be

executed at the end of the group. It calls \bbl@set@language with the name of the current language

as its argument.

\bbl@language@stack The previous solution works for one level of nesting groups, but as soon as

more levels are used it is no longer adequate. For that case we need to keep track of the nested

languages using a stack mechanism. This stack is called \bbl@language@stack and initially empty.

559 \def\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to retrieve the

information afterwards.

15

\bbl@push@language

\bbl@pop@language The stack is simply a list of languagenames, separated with a ‘+’ sign; the push

function can be simple:

560 \def\bbl@push@language{%

561 \ifx\languagename\@undefined\else

562 \ifx\currentgrouplevel\@undefined

563 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}%

564 \else

565 \ifnum\currentgrouplevel=\z@

566 \xdef\bbl@language@stack{\languagename+}%

567 \else

568 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}%

569 \fi

570 \fi

571 \fi}

Retrieving information from the stack is a little bit less simple, as we need to remove the element

from the stack while storing it in the macro \languagename. For this we first define a helper function.

\bbl@pop@lang This macro stores its first element (which is delimited by the ‘+’-sign) in

\languagename and stores the rest of the string in \bbl@language@stack.

572 \def\bbl@pop@lang#1+#2\@@{%

573 \edef\languagename{#1}%

574 \xdef\bbl@language@stack{#2}}

The reason for the somewhat weird arrangement of arguments to the helper function is the fact it

is called in the following way. This means that before \bbl@pop@lang is executed TEX first expands

the stack, stored in \bbl@language@stack. The result of that is that the argument string of

\bbl@pop@lang contains one or more language names, each followed by a ‘+’-sign (zero language

names won’t occur as this macro will only be called after something has been pushed on the stack).

575 \let\bbl@ifrestoring\@secondoftwo

576 \def\bbl@pop@language{%

577 \expandafter\bbl@pop@lang\bbl@language@stack\@@

578 \let\bbl@ifrestoring\@firstoftwo

579 \expandafter\bbl@set@language\expandafter{\languagename}%

580 \let\bbl@ifrestoring\@secondoftwo}

Once the name of the previous language is retrieved from the stack, it is fed to \bbl@set@language

to do the actual work of switching everything that needs switching.

An alternative way to identify languages (in the babel sense) with a numerical value is introduced

in 3.30. This is one of the first steps for a new interface based on the concept of locale, which explains

the name of \localeid. This means \l@... will be reserved for hyphenation patterns (so that two

locales can share the same rules).

581 \chardef\localeid\z@

582 \gdef\bbl@id@last{0} % No real need for a new counter

583 \def\bbl@id@assign{%

584 \bbl@ifunset{bbl@id@@\languagename}%

585 {\count@\bbl@id@last\relax

586 \advance\count@\@ne

587 \global\bbl@csarg\chardef{id@@\languagename}\count@

588 \xdef\bbl@id@last{\the\count@}%

589 \ifcase\bbl@engine\or

590 \directlua{

591 Babel.locale_props[\bbl@id@last] = {}

592 Babel.locale_props[\bbl@id@last].name = '\languagename'

593 Babel.locale_props[\bbl@id@last].vars = {}

594 }%

595 \fi}%

596 {}%

597 \chardef\localeid\bbl@cl{id@}}

The unprotected part of \selectlanguage. In case it is used as environment, declare

\endselectlaguage, just for safety.

16

598 \let\bbl@select@opts\@empty

599 \expandafter\def\csname selectlanguage \endcsname{%

600 \@ifnextchar[\bbl@select@s{\bbl@select@s[]}}

601 \def\bbl@select@s[#1]#2{%

602 \def\bbl@select@opts{#1}%

603 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\tw@\fi

604 \bbl@push@language

605 \aftergroup\bbl@pop@language

606 \bbl@set@language{#2}}

607 \let\endselectlanguage\relax

\bbl@set@language The macro \bbl@set@language takes care of switching the language

environment and of writing entries on the auxiliary files. For historical reasons, language names can

be either language of \language. To catch either form a trick is used, but unfortunately as a side

effect the catcodes of letters in \languagename are messed up. This is a bug, but preserved for

backwards compatibility. The list of auxiliary files can be extended by redefining

\BabelContentsFiles, but make sure they are loaded inside a group (as aux, toc, lof, and lot do)

or the last language of the document will remain active afterwards.

We also write a command to change the current language in the auxiliary files.

\bbl@savelastskip is used to deal with skips before the write whatsit (as suggested by U Fischer).

Adapted from hyperref, but it might fail, so I’ll consider it a temporary hack, while I study other

options (the ideal, but very likely unfeasible except perhaps in luatex, is to avoid the \write

altogether when not needed).

608 \def\BabelContentsFiles{toc,lof,lot}

609 \def\bbl@set@language#1{% from selectlanguage, pop@

610 % The old buggy way. Preserved for compatibility, but simplified

611 \edef\languagename{\expandafter\string#1\@empty}%

612 \select@language{\languagename}%

613 \bbl@xin@{,main,}{,\bbl@select@opts,}%

614 \ifin@

615 \let\bbl@main@language\localename

616 \let\mainlocalename\localename

617 \fi

618 \let\bbl@select@opts\@empty

619 % write to aux files

620 \expandafter\ifx\csname date\languagename\endcsname\relax\else

621 \if@filesw

622 \bbl@xin@{,nofiles,}{,\bbl@select@opts,}%

623 \ifin@\else

624 \ifx\babel@aux\@gobbletwo\else % Set if single in the first, redundant

625 \bbl@savelastskip

626 \protected@write\@auxout{}{\string\babel@aux{\bbl@auxname}{}}%

627 \bbl@restorelastskip

628 \fi

629 \bbl@usehooks{write}{}%

630 \fi

631 \fi

632 \fi}

633 %

634 \let\bbl@restorelastskip\relax

635 \let\bbl@savelastskip\relax

636 %

637 \def\select@language#1{% from set@, babel@aux, babel@toc

638 \ifx\bbl@selectorname\@empty

639 \def\bbl@selectorname{select}%

640 \fi

641 % set hymap

642 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi

643 % set name (when coming from babel@aux)

644 \edef\languagename{#1}%

645 \bbl@fixname\languagename

646 % define \localename when coming from set@, with a trick

647 \ifx\scantokens\@undefined

17

648 \def\localename{??}%

649 \else

650 \bbl@exp{\\\scantokens{\def\\\localename{\languagename}\\\noexpand}\relax}%

651 \fi

652 \bbl@provide@locale

653 \bbl@iflanguage\languagename{%

654 \let\bbl@select@type\z@

655 \expandafter\bbl@switch\expandafter{\languagename}}}

656 \def\babel@aux#1#2{%

657 \select@language{#1}%

658 \bbl@foreach\BabelContentsFiles{% \relax -> don't assume vertical mode

659 \@writefile{##1}{\babel@toc{#1}{#2}\relax}}}%

660 \def\babel@toc#1#2{%

661 \select@language{#1}}

First, check if the user asks for a known language. If so, update the value of \language and call

\originalTeX to bring TEX in a certain pre-defined state.

The name of the language is stored in the control sequence \languagename.

Then we have to redefine \originalTeX to compensate for the things that have been activated. To

save memory space for the macro definition of \originalTeX, we construct the control sequence

name for the \noextras〈language〉 command at definition time by expanding the \csname primitive.

Now activate the language-specific definitions. This is done by constructing the names of three

macros by concatenating three words with the argument of \selectlanguage, and calling these

macros.

The switching of the values of \lefthyphenmin and \righthyphenmin is somewhat different. First

we save their current values, then we check if \〈language〉hyphenmins is defined. If it is not, we set

default values (2 and 3), otherwise the values in \〈language〉hyphenmins will be used.

No text is supposed to be added with switching captions and date, so we remove any spurious

spaces with \bbl@bsphack and \bbl@esphack.

662 \newif\ifbbl@usedategroup

663 \let\bbl@savedextras\@empty

664 \def\bbl@switch#1{% from select@, foreign@

665 % restore

666 \originalTeX

667 \expandafter\def\expandafter\originalTeX\expandafter{%

668 \csname noextras#1\endcsname

669 \let\originalTeX\@empty

670 \babel@beginsave}%

671 \bbl@usehooks{afterreset}{}%

672 \languageshorthands{none}%

673 % set the locale id

674 \bbl@id@assign

675 % switch captions, date

676 \bbl@bsphack

677 \ifcase\bbl@select@type

678 \csname captions#1\endcsname\relax

679 \csname date#1\endcsname\relax

680 \else

681 \bbl@xin@{,captions,}{,\bbl@select@opts,}%

682 \ifin@

683 \csname captions#1\endcsname\relax

684 \fi

685 \bbl@xin@{,date,}{,\bbl@select@opts,}%

686 \ifin@ % if \foreign... within \<language>date

687 \csname date#1\endcsname\relax

688 \fi

689 \fi

690 \bbl@esphack

691 % switch extras

692 \csname bbl@preextras@#1\endcsname

693 \bbl@usehooks{beforeextras}{}%

694 \csname extras#1\endcsname\relax

695 \bbl@usehooks{afterextras}{}%

18

696 % > babel-ensure

697 % > babel-sh-<short>

698 % > babel-bidi

699 % > babel-fontspec

700 \let\bbl@savedextras\@empty

701 % hyphenation - case mapping

702 \ifcase\bbl@opt@hyphenmap\or

703 \def\BabelLower##1##2{\lccode##1=##2\relax}%

704 \ifnum\bbl@hymapsel>4\else

705 \csname\languagename @bbl@hyphenmap\endcsname

706 \fi

707 \chardef\bbl@opt@hyphenmap\z@

708 \else

709 \ifnum\bbl@hymapsel>\bbl@opt@hyphenmap\else

710 \csname\languagename @bbl@hyphenmap\endcsname

711 \fi

712 \fi

713 \let\bbl@hymapsel\@cclv

714 % hyphenation - select rules

715 \ifnum\csname l@\languagename\endcsname=\l@unhyphenated

716 \edef\bbl@tempa{u}%

717 \else

718 \edef\bbl@tempa{\bbl@cl{lnbrk}}%

719 \fi

720 % linebreaking - handle u, e, k (v in the future)

721 \bbl@xin@{/u}{/\bbl@tempa}%

722 \ifin@\else\bbl@xin@{/e}{/\bbl@tempa}\fi % elongated forms

723 \ifin@\else\bbl@xin@{/k}{/\bbl@tempa}\fi % only kashida

724 \ifin@\else\bbl@xin@{/p}{/\bbl@tempa}\fi % padding (e.g., Tibetan)

725 \ifin@\else\bbl@xin@{/v}{/\bbl@tempa}\fi % variable font

726 % hyphenation - save mins

727 \babel@savevariable\lefthyphenmin

728 \babel@savevariable\righthyphenmin

729 \ifnum\bbl@engine=\@ne

730 \babel@savevariable\hyphenationmin

731 \fi

732 \ifin@

733 % unhyphenated/kashida/elongated/padding = allow stretching

734 \language\l@unhyphenated

735 \babel@savevariable\emergencystretch

736 \emergencystretch\maxdimen

737 \babel@savevariable\hbadness

738 \hbadness\@M

739 \else

740 % other = select patterns

741 \bbl@patterns{#1}%

742 \fi

743 % hyphenation - set mins

744 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

745 \set@hyphenmins\tw@\thr@@\relax

746 \@nameuse{bbl@hyphenmins@}%

747 \else

748 \expandafter\expandafter\expandafter\set@hyphenmins

749 \csname #1hyphenmins\endcsname\relax

750 \fi

751 \@nameuse{bbl@hyphenmins@}%

752 \@nameuse{bbl@hyphenmins@\languagename}%

753 \@nameuse{bbl@hyphenatmin@}%

754 \@nameuse{bbl@hyphenatmin@\languagename}%

755 \let\bbl@selectorname\@empty}

otherlanguage It can be used as an alternative to using the \selectlanguage declarative command.

The \ignorespaces command is necessary to hide the environment when it is entered in horizontal

19

mode.

756 \edef\otherlanguage{%

757 \noexpand\protect

758 \expandafter\noexpand\csname otherlanguage \endcsname}

759 \expandafter\def\csname otherlanguage \endcsname{%

760 \@ifstar{\@nameuse{otherlanguage*}}\bbl@otherlanguage}

761 \def\bbl@otherlanguage#1{%

762 \def\bbl@selectorname{other}%

763 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\thr@@\fi

764 \csname selectlanguage \endcsname{#1}%

765 \ignorespaces}

The \endotherlanguage part of the environment tries to hide itself when it is called in horizontal

mode.

766 \long\def\endotherlanguage{\@ignoretrue\ignorespaces}

otherlanguage* It is meant to be used when a large part of text from a different language needs to be

typeset, but without changing the translation of words such as ‘figure’. It makes use of

\foreign@language.

767 \expandafter\def\csname otherlanguage*\endcsname{%

768 \@ifnextchar[\bbl@otherlanguage@s{\bbl@otherlanguage@s[]}}

769 \def\bbl@otherlanguage@s[#1]#2{%

770 \def\bbl@selectorname{other*}%

771 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi

772 \def\bbl@select@opts{#1}%

773 \foreign@language{#2}}

At the end of the environment we need to switch off the extra definitions. The grouping mechanism

of the environment will take care of resetting the correct hyphenation rules and “extras”.

774 \expandafter\let\csname endotherlanguage*\endcsname\relax

\foreignlanguage This command takes two arguments, the first argument is the name of the

language to use for typesetting the text specified in the second argument.

Unlike \selectlanguage this command doesn’t switch everything, it only switches the hyphenation

rules and the extra definitions for the language specified. It does this within a group and assumes the

\extras〈language〉 command doesn’t make any \global changes. The coding is very similar to part

of \selectlanguage.

\bbl@beforeforeign is a trick to fix a bug in bidi texts. \foreignlanguage is supposed to be a

‘text’ command, and therefore it must emit a \leavevmode, but it does not, and therefore the indent

is placed on the opposite margin. For backward compatibility, however, it is done only if a

right-to-left script is requested; otherwise, it is no-op.

(3.11) \foreignlanguage* is a temporary, experimental macro for a few lines with a different

script direction, while preserving the paragraph format (thank the braces around \par, things like

\hangindent are not reset). Do not use it in production, because its semantics and its syntax may

change (and very likely will, or even it could be removed altogether). Currently it enters in vmode

and then selects the language (which in turn sets the paragraph direction).

(3.11) Also experimental are the hook foreign and foreign*. With them you can redefine

\BabelText which by default does nothing. Its behavior is not well defined yet. So, use it in

horizontal mode only if you do not want surprises.

In other words, at the beginning of a paragraph \foreignlanguage enters into hmode with the

surrounding lang, and with \foreignlanguage* with the new lang.

775 \providecommand\bbl@beforeforeign{}

776 \edef\foreignlanguage{%

777 \noexpand\protect

778 \expandafter\noexpand\csname foreignlanguage \endcsname}

779 \expandafter\def\csname foreignlanguage \endcsname{%

780 \@ifstar\bbl@foreign@s\bbl@foreign@x}

781 \providecommand\bbl@foreign@x[3][]{%

782 \begingroup

783 \def\bbl@selectorname{foreign}%

784 \def\bbl@select@opts{#1}%

785 \let\BabelText\@firstofone

20

786 \bbl@beforeforeign

787 \foreign@language{#2}%

788 \bbl@usehooks{foreign}{}%

789 \BabelText{#3}% Now in horizontal mode!

790 \endgroup}

791 \def\bbl@foreign@s#1#2{%

792 \begingroup

793 {\par}%

794 \def\bbl@selectorname{foreign*}%

795 \let\bbl@select@opts\@empty

796 \let\BabelText\@firstofone

797 \foreign@language{#1}%

798 \bbl@usehooks{foreign*}{}%

799 \bbl@dirparastext

800 \BabelText{#2}% Still in vertical mode!

801 {\par}%

802 \endgroup}

803 \providecommand\BabelWrapText[1]{%

804 \def\bbl@tempa{\def\BabelText####1}%

805 \expandafter\bbl@tempa\expandafter{\BabelText{#1}}}

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage*

environment. First we need to store the name of the language and check that it is a known language.

Then it just calls bbl@switch.

806 \def\foreign@language#1{%

807 % set name

808 \edef\languagename{#1}%

809 \ifbbl@usedategroup

810 \bbl@add\bbl@select@opts{,date,}%

811 \bbl@usedategroupfalse

812 \fi

813 \bbl@fixname\languagename

814 \let\localename\languagename

815 \bbl@provide@locale

816 \bbl@iflanguage\languagename{%

817 \let\bbl@select@type\@ne

818 \expandafter\bbl@switch\expandafter{\languagename}}}

The following macro executes conditionally some code based on the selector being used.

819 \def\IfBabelSelectorTF#1{%

820 \bbl@xin@{,\bbl@selectorname,}{,\zap@space#1 \@empty,}%

821 \ifin@

822 \expandafter\@firstoftwo

823 \else

824 \expandafter\@secondoftwo

825 \fi}

\bbl@patterns This macro selects the hyphenation patterns by changing the \language register. If

special hyphenation patterns are available specifically for the current font encoding, use them

instead of the default.

It also sets hyphenation exceptions, but only once, because they are global (here language

\lccode’s has been set, too). \bbl@hyphenation@ is set to relax until the very first

\babelhyphenation, so do nothing with this value. If the exceptions for a language (by its number,

not its name, so that :ENC is taken into account) has been set, then use \hyphenation with both

global and language exceptions and empty the latter to mark they must not be set again.

826 \let\bbl@hyphlist\@empty

827 \let\bbl@hyphenation@\relax

828 \let\bbl@pttnlist\@empty

829 \let\bbl@patterns@\relax

830 \let\bbl@hymapsel=\@cclv

831 \def\bbl@patterns#1{%

832 \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax

21

833 \csname l@#1\endcsname

834 \edef\bbl@tempa{#1}%

835 \else

836 \csname l@#1:\f@encoding\endcsname

837 \edef\bbl@tempa{#1:\f@encoding}%

838 \fi

839 \@expandtwoargs\bbl@usehooks{patterns}{{#1}{\bbl@tempa}}%

840 % > luatex

841 \@ifundefined{bbl@hyphenation@}{}{% Can be \relax!

842 \begingroup

843 \bbl@xin@{,\number\language,}{,\bbl@hyphlist}%

844 \ifin@\else

845 \@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%

846 \hyphenation{%

847 \bbl@hyphenation@

848 \@ifundefined{bbl@hyphenation@#1}%

849 \@empty

850 {\space\csname bbl@hyphenation@#1\endcsname}}%

851 \xdef\bbl@hyphlist{\bbl@hyphlist\number\language,}%

852 \fi

853 \endgroup}}

hyphenrules It can be used to select just the hyphenation rules. It does not change \languagename

and when the hyphenation rules specified were not loaded it has no effect. Note however, \lccode’s

and font encodings are not set at all, so in most cases you should use otherlanguage*.

854 \def\hyphenrules#1{%

855 \edef\bbl@tempf{#1}%

856 \bbl@fixname\bbl@tempf

857 \bbl@iflanguage\bbl@tempf{%

858 \expandafter\bbl@patterns\expandafter{\bbl@tempf}%

859 \ifx\languageshorthands\@undefined\else

860 \languageshorthands{none}%

861 \fi

862 \expandafter\ifx\csname\bbl@tempf hyphenmins\endcsname\relax

863 \set@hyphenmins\tw@\thr@@\relax

864 \else

865 \expandafter\expandafter\expandafter\set@hyphenmins

866 \csname\bbl@tempf hyphenmins\endcsname\relax

867 \fi}}

868 \let\endhyphenrules\@empty

\providehyphenmins The macro \providehyphenmins should be used in the language definition files

to provide a default setting for the hyphenation parameters \lefthyphenmin and \righthyphenmin.

If the macro \〈language〉hyphenmins is already defined this command has no effect.

869 \def\providehyphenmins#1#2{%

870 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

871 \@namedef{#1hyphenmins}{#2}%

872 \fi}

\set@hyphenmins This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects

two values as its argument.

873 \def\set@hyphenmins#1#2{%

874 \lefthyphenmin#1\relax

875 \righthyphenmin#2\relax}

\ProvidesLanguage The identification code for each file is something that was introduced in LATEX2ε.
When the command \ProvidesFile does not exist, a dummy definition is provided temporarily. For

use in the language definition file the command \ProvidesLanguage is defined by babel.

Depending on the format, i.e., or if the former is defined, we use a similar definition or not.

876 \ifx\ProvidesFile\@undefined

22

877 \def\ProvidesLanguage#1[#2 #3 #4]{%

878 \wlog{Language: #1 #4 #3 <#2>}%

879 }

880 \else

881 \def\ProvidesLanguage#1{%

882 \begingroup

883 \catcode`\ 10 %

884 \@makeother\/%

885 \@ifnextchar[%]

886 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}

887 \def\@provideslanguage#1[#2]{%

888 \wlog{Language: #1 #2}%

889 \expandafter\xdef\csname ver@#1.ldf\endcsname{#2}%

890 \endgroup}

891 \fi

\originalTeX The macro\originalTeX should be known to TEX at this moment. As it has to be

expandable we \let it to \@empty instead of \relax.

892 \ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the macro which

initializes the save mechanism, \babel@beginsave, is not considered to be undefined.

893 \ifx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi

A few macro names are reserved for future releases of babel, which will use the concept of ‘locale’:

894 \providecommand\setlocale{\bbl@error{not-yet-available}{}{}{}}

895 \let\uselocale\setlocale

896 \let\locale\setlocale

897 \let\selectlocale\setlocale

898 \let\textlocale\setlocale

899 \let\textlanguage\setlocale

900 \let\languagetext\setlocale

4.2. Errors

\@nolanerr

\@nopatterns The babel package will signal an error when a documents tries to select a language

that hasn’t been defined earlier. When a user selects a language for which no hyphenation patterns

were loaded into the format he will be given a warning about that fact. We revert to the patterns for

\language=0 in that case. In most formats that will be (US)english, but it might also be empty.

\@noopterr When the package was loaded without options not everything will work as expected. An

error message is issued in that case.

When the format knows about \PackageError it must be LATEX2ε, so we can safely use its error

handling interface. Otherwise we’ll have to ‘keep it simple’.

Infos are not written to the console, but on the other hand many people think warnings are errors,

so a further message type is defined: an important info which is sent to the console.

901 \edef\bbl@nulllanguage{\string\language=0}

902 \def\bbl@nocaption{\protect\bbl@nocaption@i}

903 \def\bbl@nocaption@i#1#2{% 1: text to be printed 2: caption macro \langXname

904 \global\@namedef{#2}{\textbf{?#1?}}%

905 \@nameuse{#2}%

906 \edef\bbl@tempa{#1}%

907 \bbl@sreplace\bbl@tempa{name}{}%

908 \bbl@sreplace\bbl@tempa{NAME}{}%

909 \bbl@warning{%

910 \@backslashchar#1 not set for '\languagename'. Please,\\%

911 define it after the language has been loaded\\%

912 (typically in the preamble) with:\\%

913 \string\setlocalecaption{\languagename}{\bbl@tempa}{..}\\%

914 Feel free to contribute on github.com/latex3/babel.\\%

915 Reported}}

23

916 \def\bbl@tentative{\protect\bbl@tentative@i}

917 \def\bbl@tentative@i#1{%

918 \bbl@warning{%

919 Some functions for '#1' are tentative.\\%

920 They might not work as expected and their behavior\\%

921 could change in the future.\\%

922 Reported}}

923 \def\@nolanerr#1{\bbl@error{undefined-language}{#1}{}{}}

924 \def\@nopatterns#1{%

925 \bbl@warning

926 {No hyphenation patterns were preloaded for\\%

927 the language '#1' into the format.\\%

928 Please, configure your TeX system to add them and\\%

929 rebuild the format. Now I will use the patterns\\%

930 preloaded for \bbl@nulllanguage\space instead}}

931 \let\bbl@usehooks\@gobbletwo

Here ended the now discarded switch.def.

Here also (currently) ends the base option.

932 \ifx\bbl@onlyswitch\@empty\endinput\fi

4.3. More on selection

\babelensure The user command just parses the optional argument and creates a new macro named

\bbl@e@〈language〉. We register a hook at the afterextras event which just executes this macro in a

“complete” selection (which, if undefined, is \relax and does nothing). This part is somewhat

involved because we have to make sure things are expanded the correct number of times.

The macro \bbl@e@〈language〉 contains \bbl@ensure{〈include〉}{〈exclude〉}{〈fontenc〉}, which in

in turn loops over the macros names in \bbl@captionslist, excluding (with the help of \in@) those

in the exclude list. If the fontenc is given (and not \relax), the \fontencoding is also added. Then

we loop over the include list, but if the macro already contains \foreignlanguage, nothing is done.

Note this macro (1) is not restricted to the preamble, and (2) changes are local.

933 \bbl@trace{Defining babelensure}

934 \newcommand\babelensure[2][]{%

935 \AddBabelHook{babel-ensure}{afterextras}{%

936 \ifcase\bbl@select@type

937 \bbl@cl{e}%

938 \fi}%

939 \begingroup

940 \let\bbl@ens@include\@empty

941 \let\bbl@ens@exclude\@empty

942 \def\bbl@ens@fontenc{\relax}%

943 \def\bbl@tempb##1{%

944 \ifx\@empty##1\else\noexpand##1\expandafter\bbl@tempb\fi}%

945 \edef\bbl@tempa{\bbl@tempb#1\@empty}%

946 \def\bbl@tempb##1=##2\@@{\@namedef{bbl@ens@##1}{##2}}%

947 \bbl@foreach\bbl@tempa{\bbl@tempb##1\@@}%

948 \def\bbl@tempc{\bbl@ensure}%

949 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%

950 \expandafter{\bbl@ens@include}}%

951 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%

952 \expandafter{\bbl@ens@exclude}}%

953 \toks@\expandafter{\bbl@tempc}%

954 \bbl@exp{%

955 \endgroup

956 \def\<bbl@e@#2>{\the\toks@{\bbl@ens@fontenc}}}}

957 \def\bbl@ensure#1#2#3{% 1: include 2: exclude 3: fontenc

958 \def\bbl@tempb##1{% elt for (excluding) \bbl@captionslist list

959 \ifx##1\@undefined % 3.32 - Don't assume the macro exists

960 \edef##1{\noexpand\bbl@nocaption

961 {\bbl@stripslash##1}{\languagename\bbl@stripslash##1}}%

962 \fi

963 \ifx##1\@empty\else

24

964 \in@{##1}{#2}%

965 \ifin@\else

966 \bbl@ifunset{bbl@ensure@\languagename}%

967 {\bbl@exp{%

968 \\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%

969 \\\foreignlanguage{\languagename}%

970 {\ifx\relax#3\else

971 \\\fontencoding{#3}\\\selectfont

972 \fi

973 ########1}}}}%

974 {}%

975 \toks@\expandafter{##1}%

976 \edef##1{%

977 \bbl@csarg\noexpand{ensure@\languagename}%

978 {\the\toks@}}%

979 \fi

980 \expandafter\bbl@tempb

981 \fi}%

982 \expandafter\bbl@tempb\bbl@captionslist\today\@empty

983 \def\bbl@tempa##1{% elt for include list

984 \ifx##1\@empty\else

985 \bbl@csarg\in@{ensure@\languagename\expandafter}\expandafter{##1}%

986 \ifin@\else

987 \bbl@tempb##1\@empty

988 \fi

989 \expandafter\bbl@tempa

990 \fi}%

991 \bbl@tempa#1\@empty}

992 \def\bbl@captionslist{%

993 \prefacename\refname\abstractname\bibname\chaptername\appendixname

994 \contentsname\listfigurename\listtablename\indexname\figurename

995 \tablename\partname\enclname\ccname\headtoname\pagename\seename

996 \alsoname\proofname\glossaryname}

4.4. Short tags

\babeltags This macro is straightforward. After zapping spaces, we loop over the list and define the

macros \text〈tag〉 and \〈tag〉. Definitions are first expanded so that they don’t contain \csname but

the actual macro.

997 \bbl@trace{Short tags}

998 \newcommand\babeltags[1]{%

999 \edef\bbl@tempa{\zap@space#1 \@empty}%

1000 \def\bbl@tempb##1=##2\@@{%

1001 \edef\bbl@tempc{%

1002 \noexpand\newcommand

1003 \expandafter\noexpand\csname ##1\endcsname{%

1004 \noexpand\protect

1005 \expandafter\noexpand\csname otherlanguage*\endcsname{##2}}

1006 \noexpand\newcommand

1007 \expandafter\noexpand\csname text##1\endcsname{%

1008 \noexpand\foreignlanguage{##2}}}

1009 \bbl@tempc}%

1010 \bbl@for\bbl@tempa\bbl@tempa{%

1011 \expandafter\bbl@tempb\bbl@tempa\@@}}

4.5. Compatibility with language.def

Plain e-TEX doesn’t rely on language.dat, but babel can be made compatible with this format easily.

1012 \bbl@trace{Compatibility with language.def}

1013 \ifx\directlua\@undefined\else

1014 \ifx\bbl@luapatterns\@undefined

1015 \input luababel.def

25

1016 \fi

1017 \fi

1018 \ifx\bbl@languages\@undefined

1019 \ifx\directlua\@undefined

1020 \openin1 = language.def

1021 \ifeof1

1022 \closein1

1023 \message{I couldn't find the file language.def}

1024 \else

1025 \closein1

1026 \begingroup

1027 \def\addlanguage#1#2#3#4#5{%

1028 \expandafter\ifx\csname lang@#1\endcsname\relax\else

1029 \global\expandafter\let\csname l@#1\expandafter\endcsname

1030 \csname lang@#1\endcsname

1031 \fi}%

1032 \def\uselanguage#1{}%

1033 \input language.def

1034 \endgroup

1035 \fi

1036 \fi

1037 \chardef\l@english\z@

1038 \fi

\addto It takes two arguments, a 〈control sequence〉 and TEX-code to be added to the 〈control
sequence〉.
If the 〈control sequence〉 has not been defined before it is defined now. The control sequence could

also expand to \relax, in which case a circular definition results. The net result is a stack overflow.

Note there is an inconsistency, because the assignment in the last branch is global.

1039 \def\addto#1#2{%

1040 \ifx#1\@undefined

1041 \def#1{#2}%

1042 \else

1043 \ifx#1\relax

1044 \def#1{#2}%

1045 \else

1046 {\toks@\expandafter{#1#2}%

1047 \xdef#1{\the\toks@}}%

1048 \fi

1049 \fi}

4.6. Hooks

Admittedly, the current implementation is a somewhat simplistic and does very little to catch errors,

but it is meant for developers, after all. \bbl@usehooks is the commands used by babel to execute

hooks defined for an event.

1050 \bbl@trace{Hooks}

1051 \newcommand\AddBabelHook[3][]{%

1052 \bbl@ifunset{bbl@hk@#2}{\EnableBabelHook{#2}}{}%

1053 \def\bbl@tempa##1,#3=##2,##3\@empty{\def\bbl@tempb{##2}}%

1054 \expandafter\bbl@tempa\bbl@evargs,#3=,\@empty

1055 \bbl@ifunset{bbl@ev@#2@#3@#1}%

1056 {\bbl@csarg\bbl@add{ev@#3@#1}{\bbl@elth{#2}}}%

1057 {\bbl@csarg\let{ev@#2@#3@#1}\relax}%

1058 \bbl@csarg\newcommand{ev@#2@#3@#1}[\bbl@tempb]}

1059 \newcommand\EnableBabelHook[1]{\bbl@csarg\let{hk@#1}\@firstofone}

1060 \newcommand\DisableBabelHook[1]{\bbl@csarg\let{hk@#1}\@gobble}

1061 \def\bbl@usehooks{\bbl@usehooks@lang\languagename}

1062 \def\bbl@usehooks@lang#1#2#3{% Test for Plain

1063 \ifx\UseHook\@undefined\else\UseHook{babel/*/#2}\fi

1064 \def\bbl@elth##1{%

1065 \bbl@cs{hk@##1}{\bbl@cs{ev@##1@#2@}#3}}%

26

1066 \bbl@cs{ev@#2@}%

1067 \ifx\languagename\@undefined\else % Test required for Plain (?)

1068 \ifx\UseHook\@undefined\else\UseHook{babel/#1/#2}\fi

1069 \def\bbl@elth##1{%

1070 \bbl@cs{hk@##1}{\bbl@cs{ev@##1@#2@#1}#3}}%

1071 \bbl@cs{ev@#2@#1}%

1072 \fi}

To ensure forward compatibility, arguments in hooks are set implicitly. So, if a further argument is

added in the future, there is no need to change the existing code. Note events intended for hyphen.cfg

are also loaded (just in case you need them for some reason).

1073 \def\bbl@evargs{,% <- don't delete this comma

1074 everylanguage=1,loadkernel=1,loadpatterns=1,loadexceptions=1,%

1075 adddialect=2,patterns=2,defaultcommands=0,encodedcommands=2,write=0,%

1076 beforeextras=0,afterextras=0,stopcommands=0,stringprocess=0,%

1077 hyphenation=2,initiateactive=3,afterreset=0,foreign=0,foreign*=0,%

1078 beforestart=0,languagename=2,begindocument=1}

1079 \ifx\NewHook\@undefined\else % Test for Plain (?)

1080 \def\bbl@tempa#1=#2\@@{\NewHook{babel/#1}}

1081 \bbl@foreach\bbl@evargs{\bbl@tempa#1\@@}

1082 \fi

Since the following command is meant for a hook (although a LATEX one), it’s placed here.

1083 \providecommand\PassOptionsToLocale[2]{%

1084 \bbl@csarg\bbl@add@list{passto@#2}{#1}}

4.7. Setting up language files

\LdfInit \LdfInitmacro takes two arguments. The first argument is the name of the language that

will be defined in the language definition file; the second argument is either a control sequence or a

string from which a control sequence should be constructed. The existence of the control sequence

indicates that the file has been processed before.

At the start of processing a language definition file we always check the category code of the

at-sign. We make sure that it is a ‘letter’ during the processing of the file. We also save its name as the

last called option, even if not loaded.

Another character that needs to have the correct category code during processing of language

definition files is the equals sign, ‘=’, because it is sometimes used in constructions with the \let

primitive. Therefore we store its current catcode and restore it later on.

Now we check whether we should perhaps stop the processing of this file. To do this we first need

to check whether the second argument that is passed to \LdfInit is a control sequence. We do that

by looking at the first token after passing #2 through string. When it is equal to \@backslashchar

we are dealing with a control sequence which we can compare with \@undefined.

If so, we call \ldf@quit to set the main language, restore the category code of the @-sign and call

\endinput

When #2 was not a control sequence we construct one and compare it with \relax.

Finally we check \originalTeX.

1085 \bbl@trace{Macros for setting language files up}

1086 \def\bbl@ldfinit{%

1087 \let\bbl@screset\@empty

1088 \let\BabelStrings\bbl@opt@string

1089 \let\BabelOptions\@empty

1090 \let\BabelLanguages\relax

1091 \ifx\originalTeX\@undefined

1092 \let\originalTeX\@empty

1093 \else

1094 \originalTeX

1095 \fi}

1096 \def\LdfInit#1#2{%

1097 \chardef\atcatcode=\catcode`\@

1098 \catcode`\@=11\relax

1099 \chardef\eqcatcode=\catcode`\=

1100 \catcode`\==12\relax

1101 \@ifpackagewith{babel}{ensureinfo=off}{}%

27

1102 {\ifx\InputIfFileExists\@undefined\else

1103 \bbl@ifunset{bbl@lname@#1}%

1104 {{\let\bbl@ensuring\@empty % Flag used in babel-serbianc.tex

1105 \def\languagename{#1}%

1106 \bbl@id@assign

1107 \bbl@load@info{#1}}}%

1108 {}%

1109 \fi}%

1110 \expandafter\if\expandafter\@backslashchar

1111 \expandafter\@car\string#2\@nil

1112 \ifx#2\@undefined\else

1113 \ldf@quit{#1}%

1114 \fi

1115 \else

1116 \expandafter\ifx\csname#2\endcsname\relax\else

1117 \ldf@quit{#1}%

1118 \fi

1119 \fi

1120 \bbl@ldfinit}

\ldf@quit This macro interrupts the processing of a language definition file. Remember \endinput is

not executed immediately, but delayed to the end of the current line in the input file.

1121 \def\ldf@quit#1{%

1122 \expandafter\main@language\expandafter{#1}%

1123 \catcode`\@=\atcatcode \let\atcatcode\relax

1124 \catcode`\==\eqcatcode \let\eqcatcode\relax

1125 \endinput}

\ldf@finish This macro takes one argument. It is the name of the language that was defined in the

language definition file.

We load the local configuration file if one is present, we set the main language (taking into account

that the argument might be a control sequence that needs to be expanded) and reset the category

code of the @-sign.

1126 \def\bbl@afterldf{%

1127 \bbl@afterlang

1128 \let\bbl@afterlang\relax

1129 \let\BabelModifiers\relax

1130 \let\bbl@screset\relax}%

1131 \def\ldf@finish#1{%

1132 \loadlocalcfg{#1}%

1133 \bbl@afterldf

1134 \expandafter\main@language\expandafter{#1}%

1135 \catcode`\@=\atcatcode \let\atcatcode\relax

1136 \catcode`\==\eqcatcode \let\eqcatcode\relax}

After the preamble of the document the commands \LdfInit, \ldf@quit and \ldf@finish are no

longer needed. Therefore they are turned into warning messages in LATEX.

1137 \@onlypreamble\LdfInit

1138 \@onlypreamble\ldf@quit

1139 \@onlypreamble\ldf@finish

\main@language

\bbl@main@language This command should be used in the various language definition files. It

stores its argument in \bbl@main@language; to be used to switch to the correct language at the

beginning of the document.

1140 \def\main@language#1{%

1141 \def\bbl@main@language{#1}%

1142 \let\languagename\bbl@main@language

1143 \let\localename\bbl@main@language

1144 \let\mainlocalename\bbl@main@language

1145 \bbl@id@assign

28

1146 \ifcase\bbl@engine\or

1147 \ifx\setattribute\@undefined\else

1148 \setattribute\bbl@attr@locale\localeid

1149 \fi

1150 \fi

1151 \bbl@patterns{\languagename}}

We also have to make sure that some code gets executed at the beginning of the document, either

when the aux file is read or, if it does not exist, when the \AtBeginDocument is executed. Languages

do not set \pagedir, so we set here for the whole document to the main \bodydir.

The code written to the aux file attempts to avoid errors if babel is removed from the document.

1152 \def\bbl@beforestart{%

1153 \def\@nolanerr##1{%

1154 \bbl@carg\chardef{l@##1}\z@

1155 \bbl@warning{Undefined language '##1' in aux.\\Reported}}%

1156 \bbl@usehooks{beforestart}{}%

1157 \global\let\bbl@beforestart\relax}

1158 \AtBeginDocument{%

1159 {\@nameuse{bbl@beforestart}}% Group!

1160 \if@filesw

1161 \providecommand\babel@aux[2]{}%

1162 \immediate\write\@mainaux{\unexpanded{%

1163 \providecommand\babel@aux[2]{\global\let\babel@toc\@gobbletwo}}}%

1164 \immediate\write\@mainaux{\string\@nameuse{bbl@beforestart}}%

1165 \fi

1166 \expandafter\selectlanguage\expandafter{\bbl@main@language}%

1167 \ifbbl@single % must go after the line above.

1168 \renewcommand\selectlanguage[1]{}%

1169 \renewcommand\foreignlanguage[2]{#2}%

1170 \global\let\babel@aux\@gobbletwo % Also as flag

1171 \fi}

1172 %

1173 \ifcase\bbl@engine\or

1174 \AtBeginDocument{\pagedir\bodydir}

1175 \fi

A bit of optimization. Select in heads/feet the language only if necessary.

1176 \def\select@language@x#1{%

1177 \ifcase\bbl@select@type

1178 \bbl@ifsamestring\languagename{#1}{}{\select@language{#1}}%

1179 \else

1180 \select@language{#1}%

1181 \fi}

4.8. Shorthands

The macro \initiate@active@char below takes all the necessary actions to make its argument a

shorthand character. The real work is performed once for each character. But first we define a little

tool.

1182 \bbl@trace{Shorhands}

1183 \def\bbl@withactive#1#2{%

1184 \begingroup

1185 \lccode`~=`#2\relax

1186 \lowercase{\endgroup#1~}}

\bbl@add@special The macro \bbl@add@special is used to add a new character (or single character

control sequence) to the macro \dospecials (and \@sanitize if LATEX is used). It is used only at one

place, namely when \initiate@active@char is called (which is ignored if the char has been made

active before). Because \@sanitize can be undefined, we put the definition inside a conditional.

Items are added to the lists without checking its existence or the original catcode. It does not hurt,

but should be fixed. It’s already done with \nfss@catcodes, added in 3.10.

1187 \def\bbl@add@special#1{% 1:a macro like \", \?, etc.

29

1188 \bbl@add\dospecials{\do#1}% test @sanitize = \relax, for back. compat.

1189 \bbl@ifunset{@sanitize}{}{\bbl@add\@sanitize{\@makeother#1}}%

1190 \ifx\nfss@catcodes\@undefined\else

1191 \begingroup

1192 \catcode`#1\active

1193 \nfss@catcodes

1194 \ifnum\catcode`#1=\active

1195 \endgroup

1196 \bbl@add\nfss@catcodes{\@makeother#1}%

1197 \else

1198 \endgroup

1199 \fi

1200 \fi}

\initiate@active@char A language definition file can call this macro to make a character active. This

macro takes one argument, the character that is to be made active. When the character was already

active this macro does nothing. Otherwise, this macro defines the control sequence

\normal@char〈char〉 to expand to the character in its ‘normal state’ and it defines the active character

to expand to \normal@char〈char〉 by default (〈char〉 being the character to be made active). Later its

definition can be changed to expand to \active@char〈char〉 by calling \bbl@activate{〈char〉}.
For example, to make the double quote character active one could have

\initiate@active@char{"} in a language definition file. This defines " as

\active@prefix "\active@char" (where the first " is the character with its original catcode, when

the shorthand is created, and \active@char" is a single token). In protected contexts, it expands to

\protect " or \noexpand " (i.e., with the original "); otherwise \active@char" is executed. This

macro in turn expands to \normal@char" in “safe” contexts (e.g., \label), but \user@active" in

normal “unsafe” ones. The latter search a definition in the user, language and system levels, in this

order, but if none is found, \normal@char" is used. However, a deactivated shorthand (with

\bbl@deactivate is defined as \active@prefix "\normal@char".

The following macro is used to define shorthands in the three levels. It takes 4 arguments: the

(string’ed) character, \〈level〉@group, 〈level〉@active and 〈next-level〉@active (except in system).

1201 \def\bbl@active@def#1#2#3#4{%

1202 \@namedef{#3#1}{%

1203 \expandafter\ifx\csname#2@sh@#1@\endcsname\relax

1204 \bbl@afterelse\bbl@sh@select#2#1{#3@arg#1}{#4#1}%

1205 \else

1206 \bbl@afterfi\csname#2@sh@#1@\endcsname

1207 \fi}%

When there is also no current-level shorthand with an argument we will check whether there is a

next-level defined shorthand for this active character.

1208 \long\@namedef{#3@arg#1}##1{%

1209 \expandafter\ifx\csname#2@sh@#1@\string##1@\endcsname\relax

1210 \bbl@afterelse\csname#4#1\endcsname##1%

1211 \else

1212 \bbl@afterfi\csname#2@sh@#1@\string##1@\endcsname

1213 \fi}}%

\initiate@active@char calls \@initiate@active@char with 3 arguments. All of them are the

same character with different catcodes: active, other (\string’ed) and the original one. This trick

simplifies the code a lot.

1214 \def\initiate@active@char#1{%

1215 \bbl@ifunset{active@char\string#1}%

1216 {\bbl@withactive

1217 {\expandafter\@initiate@active@char\expandafter}#1\string#1#1}%

1218 {}}

The very first thing to do is saving the original catcode and the original definition, even if not

active, which is possible (undefined characters require a special treatment to avoid making them

\relax and preserving some degree of protection).

1219 \def\@initiate@active@char#1#2#3{%

1220 \bbl@csarg\edef{oricat@#2}{\catcode`#2=\the\catcode`#2\relax}%

1221 \ifx#1\@undefined

30

1222 \bbl@csarg\def{oridef@#2}{\def#1{\active@prefix#1\@undefined}}%

1223 \else

1224 \bbl@csarg\let{oridef@@#2}#1%

1225 \bbl@csarg\edef{oridef@#2}{%

1226 \let\noexpand#1%

1227 \expandafter\noexpand\csname bbl@oridef@@#2\endcsname}%

1228 \fi

If the character is already active we provide the default expansion under this shorthand

mechanism. Otherwise we write a message in the transcript file, and define \normal@char〈char〉 to
expand to the character in its default state. If the character is mathematically active when babel is

loaded (for example ') the normal expansion is somewhat different to avoid an infinite loop (but it

does not prevent the loop if the mathcode is set to "8000 a posteriori).

1229 \ifx#1#3\relax

1230 \expandafter\let\csname normal@char#2\endcsname#3%

1231 \else

1232 \bbl@info{Making #2 an active character}%

1233 \ifnum\mathcode`#2=\ifodd\bbl@engine"1000000 \else"8000 \fi

1234 \@namedef{normal@char#2}{%

1235 \textormath{#3}{\csname bbl@oridef@@#2\endcsname}}%

1236 \else

1237 \@namedef{normal@char#2}{#3}%

1238 \fi

To prevent problems with the loading of other packages after babel we reset the catcode of the

character to the original one at the end of the package and of each language file (except with

KeepShorthandsActive). It is re-activate again at \begin{document}. We also need to make sure that

the shorthands are active during the processing of the aux file. Otherwise some citations may give

unexpected results in the printout when a shorthand was used in the optional argument of \bibitem

for example. Then we make it active (not strictly necessary, but done for backward compatibility).

1239 \bbl@restoreactive{#2}%

1240 \AtBeginDocument{%

1241 \catcode`#2\active

1242 \if@filesw

1243 \immediate\write\@mainaux{\catcode`\string#2\active}%

1244 \fi}%

1245 \expandafter\bbl@add@special\csname#2\endcsname

1246 \catcode`#2\active

1247 \fi

Now we have set \normal@char〈char〉, we must define \active@char〈char〉, to be executed when

the character is activated. We define the first level expansion of \active@char〈char〉 to check the

status of the @safe@actives flag. If it is set to true we expand to the ‘normal’ version of this

character, otherwise we call \user@active〈char〉 to start the search of a definition in the user,

language and system levels (or eventually normal@char〈char〉).

1248 \let\bbl@tempa\@firstoftwo

1249 \if\string^#2%

1250 \def\bbl@tempa{\noexpand\textormath}%

1251 \else

1252 \ifx\bbl@mathnormal\@undefined\else

1253 \let\bbl@tempa\bbl@mathnormal

1254 \fi

1255 \fi

1256 \expandafter\edef\csname active@char#2\endcsname{%

1257 \bbl@tempa

1258 {\noexpand\if@safe@actives

1259 \noexpand\expandafter

1260 \expandafter\noexpand\csname normal@char#2\endcsname

1261 \noexpand\else

1262 \noexpand\expandafter

1263 \expandafter\noexpand\csname bbl@doactive#2\endcsname

1264 \noexpand\fi}%

1265 {\expandafter\noexpand\csname normal@char#2\endcsname}}%

1266 \bbl@csarg\edef{doactive#2}{%

31

1267 \expandafter\noexpand\csname user@active#2\endcsname}%

We now define the default values which the shorthand is set to when activated or deactivated. It is

set to the deactivated form (globally), so that the character expands to

\active@prefix 〈char〉 \normal@char〈char〉

(where \active@char〈char〉 is one control sequence!).

1268 \bbl@csarg\edef{active@#2}{%

1269 \noexpand\active@prefix\noexpand#1%

1270 \expandafter\noexpand\csname active@char#2\endcsname}%

1271 \bbl@csarg\edef{normal@#2}{%

1272 \noexpand\active@prefix\noexpand#1%

1273 \expandafter\noexpand\csname normal@char#2\endcsname}%

1274 \bbl@ncarg\let#1{bbl@normal@#2}%

The next level of the code checks whether a user has defined a shorthand for himself with this

character. First we check for a single character shorthand. If that doesn’t exist we check for a

shorthand with an argument.

1275 \bbl@active@def#2\user@group{user@active}{language@active}%

1276 \bbl@active@def#2\language@group{language@active}{system@active}%

1277 \bbl@active@def#2\system@group{system@active}{normal@char}%

In order to do the right thing when a shorthand with an argument is used by itself at the end of the

line we provide a definition for the case of an empty argument. For that case we let the shorthand

character expand to its non-active self. Also, When a shorthand combination such as '' ends up in a

heading TEX would see \protect'\protect'. To prevent this from happening a couple of shorthand

needs to be defined at user level.

1278 \expandafter\edef\csname\user@group @sh@#2@@\endcsname

1279 {\expandafter\noexpand\csname normal@char#2\endcsname}%

1280 \expandafter\edef\csname\user@group @sh@#2@\string\protect@\endcsname

1281 {\expandafter\noexpand\csname user@active#2\endcsname}%

Finally, a couple of special cases are taken care of. (1) If we are making the right quote (') active we

need to change \pr@m@s as well. Also, make sure that a single ' in math mode ‘does the right thing’.

(2) If we are using the caret (^) as a shorthand character special care should be taken to make sure

math still works. Therefore an extra level of expansion is introduced with a check for math mode on

the upper level.

1282 \if\string'#2%

1283 \let\prim@s\bbl@prim@s

1284 \let\active@math@prime#1%

1285 \fi

1286 \bbl@usehooks{initiateactive}{{#1}{#2}{#3}}}

The following package options control the behavior of shorthands in math mode.

1287 〈〈∗More package options〉〉 ≡
1288 \DeclareOption{math=active}{}

1289 \DeclareOption{math=normal}{\def\bbl@mathnormal{\noexpand\textormath}}

1290 〈〈/More package options〉〉

Initiating a shorthand makes active the char. That is not strictly necessary but it is still done for

backward compatibility. So we need to restore the original catcode at the end of package and and the

end of the ldf.

1291 \@ifpackagewith{babel}{KeepShorthandsActive}%

1292 {\let\bbl@restoreactive\@gobble}%

1293 {\def\bbl@restoreactive#1{%

1294 \bbl@exp{%

1295 \\\AfterBabelLanguage\\\CurrentOption

1296 {\catcode`#1=\the\catcode`#1\relax}%

1297 \\\AtEndOfPackage

1298 {\catcode`#1=\the\catcode`#1\relax}}}%

1299 \AtEndOfPackage{\let\bbl@restoreactive\@gobble}}

32

\bbl@sh@select This command helps the shorthand supporting macros to select how to proceed.

Note that this macro needs to be expandable as do all the shorthand macros in order for them to

work in expansion-only environments such as the argument of \hyphenation.

This macro expects the name of a group of shorthands in its first argument and a shorthand

character in its second argument. It will expand to either \bbl@firstcs or \bbl@scndcs. Hence two

more arguments need to follow it.

1300 \def\bbl@sh@select#1#2{%

1301 \expandafter\ifx\csname#1@sh@#2@sel\endcsname\relax

1302 \bbl@afterelse\bbl@scndcs

1303 \else

1304 \bbl@afterfi\csname#1@sh@#2@sel\endcsname

1305 \fi}

\active@prefix Used in the expansion of active characters has a function similar to \OT1-cmd in that

it \protects the active character whenever \protect is not \@typeset@protect. The \@gobble is

needed to remove a token such as \activechar: (when the double colon was the active character to

be dealt with). There are two definitions, depending of \ifincsname is available. If there is, the

expansion will be more robust.

1306 \begingroup

1307 \bbl@ifunset{ifincsname}

1308 {\gdef\active@prefix#1{%

1309 \ifx\protect\@typeset@protect

1310 \else

1311 \ifx\protect\@unexpandable@protect

1312 \noexpand#1%

1313 \else

1314 \protect#1%

1315 \fi

1316 \expandafter\@gobble

1317 \fi}}

1318 {\gdef\active@prefix#1{%

1319 \ifincsname

1320 \string#1%

1321 \expandafter\@gobble

1322 \else

1323 \ifx\protect\@typeset@protect

1324 \else

1325 \ifx\protect\@unexpandable@protect

1326 \noexpand#1%

1327 \else

1328 \protect#1%

1329 \fi

1330 \expandafter\expandafter\expandafter\@gobble

1331 \fi

1332 \fi}}

1333 \endgroup

if@safe@actives In some circumstances it is necessary to be able to reset the shorthand to its

‘normal’ value (usually the character with catcode ‘other’) on the fly. For this purpose the switch

@safe@actives is available. The setting of this switch should be checked in the first level expansion

of \active@char〈char〉. When this expansion mode is active (with \@safe@activestrue), something

like "13"13 becomes "12"12 in an \edef (in other words, shorthands are \string’ed). This contrasts

with \protected@edef, where catcodes are always left unchanged. Once converted, they can be used

safely even after this expansion mode is deactivated (with \@safe@activefalse).

1334 \newif\if@safe@actives

1335 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made

“safe” this must be undone in the headers to prevent unexpected typeset results. For this situation we

define a command to make them “unsafe” again.

1336 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

33

\bbl@activate

\bbl@deactivate Both macros take one argument, like \initiate@active@char. The macro is used to

change the definition of an active character to expand to \active@char〈char〉 in the case of

\bbl@activate, or \normal@char〈char〉 in the case of \bbl@deactivate.

1337 \chardef\bbl@activated\z@

1338 \def\bbl@activate#1{%

1339 \chardef\bbl@activated\@ne

1340 \bbl@withactive{\expandafter\let\expandafter}#1%

1341 \csname bbl@active@\string#1\endcsname}

1342 \def\bbl@deactivate#1{%

1343 \chardef\bbl@activated\tw@

1344 \bbl@withactive{\expandafter\let\expandafter}#1%

1345 \csname bbl@normal@\string#1\endcsname}

\bbl@firstcs

\bbl@scndcs These macros are used only as a trick when declaring shorthands.

1346 \def\bbl@firstcs#1#2{\csname#1\endcsname}

1347 \def\bbl@scndcs#1#2{\csname#2\endcsname}

\declare@shorthand Used to declare a shorthand on a certain level. It takes three arguments:

1. a name for the collection of shorthands, i.e., ‘system’, or ‘dutch’;

2. the character (sequence) that makes up the shorthand, i.e., ~ or "a;

3. the code to be executed when the shorthand is encountered.

The auxiliary macro \babel@texpdf improves the interoperativity with hyperref and takes 4

arguments: (1) The TEX code in text mode, (2) the string for hyperref, (3) the TEX code in math mode,

and (4), which is currently ignored, but it’s meant for a string in math mode, like a minus sign instead

of an hyphen (currently hyperref doesn’t discriminate the mode). This macro may be used in ldf files.

1348 \def\babel@texpdf#1#2#3#4{%

1349 \ifx\texorpdfstring\@undefined

1350 \textormath{#1}{#3}%

1351 \else

1352 \texorpdfstring{\textormath{#1}{#3}}{#2}%

1353 % \texorpdfstring{\textormath{#1}{#3}}{\textormath{#2}{#4}}%

1354 \fi}

1355 %

1356 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}

1357 \def\@decl@short#1#2#3\@nil#4{%

1358 \def\bbl@tempa{#3}%

1359 \ifx\bbl@tempa\@empty

1360 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@scndcs

1361 \bbl@ifunset{#1@sh@\string#2@}{}%

1362 {\def\bbl@tempa{#4}%

1363 \expandafter\ifx\csname#1@sh@\string#2@\endcsname\bbl@tempa

1364 \else

1365 \bbl@info

1366 {Redefining #1 shorthand \string#2\\%

1367 in language \CurrentOption}%

1368 \fi}%

1369 \@namedef{#1@sh@\string#2@}{#4}%

1370 \else

1371 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@firstcs

1372 \bbl@ifunset{#1@sh@\string#2@\string#3@}{}%

1373 {\def\bbl@tempa{#4}%

1374 \expandafter\ifx\csname#1@sh@\string#2@\string#3@\endcsname\bbl@tempa

1375 \else

1376 \bbl@info

1377 {Redefining #1 shorthand \string#2\string#3\\%

1378 in language \CurrentOption}%

1379 \fi}%

1380 \@namedef{#1@sh@\string#2@\string#3@}{#4}%

1381 \fi}

34

\textormath Some of the shorthands that will be declared by the language definition files have to be

usable in both text and mathmode. To achieve this the helper macro \textormath is provided.

1382 \def\textormath{%

1383 \ifmmode

1384 \expandafter\@secondoftwo

1385 \else

1386 \expandafter\@firstoftwo

1387 \fi}

\user@group

\language@group

\system@group The current concept of ‘shorthands’ supports three levels or groups of shorthands.

For each level the name of the level or group is stored in a macro. The default is to have a user group;

use language group ‘english’ and have a system group called ‘system’.

1388 \def\user@group{user}

1389 \def\language@group{english}

1390 \def\system@group{system}

\useshorthands This is the user level macro. It initializes and activates the character for use as a

shorthand character (i.e., it’s active in the preamble). Languages can deactivate shorthands, so a

starred version is also provided which activates them always after the language has been switched.

1391 \def\useshorthands{%

1392 \@ifstar\bbl@usesh@s{\bbl@usesh@x{}}}

1393 \def\bbl@usesh@s#1{%

1394 \bbl@usesh@x

1395 {\AddBabelHook{babel-sh-\string#1}{afterextras}{\bbl@activate{#1}}}%

1396 {#1}}

1397 \def\bbl@usesh@x#1#2{%

1398 \bbl@ifshorthand{#2}%

1399 {\def\user@group{user}%

1400 \initiate@active@char{#2}%

1401 #1%

1402 \bbl@activate{#2}}%

1403 {\bbl@error{shorthand-is-off}{}{#2}{}}}

\defineshorthand Currently we only support two groups of user level shorthands, named internally

user and user@〈language〉 (language-dependent user shorthands). By default, only the first one is
taken into account, but if the former is also used (in the optional argument of \defineshorthand) a

new level is inserted for it (user@generic, done by \bbl@set@user@generic); we make also sure {}

and \protect are taken into account in this new top level.

1404 \def\user@language@group{user@\language@group}

1405 \def\bbl@set@user@generic#1#2{%

1406 \bbl@ifunset{user@generic@active#1}%

1407 {\bbl@active@def#1\user@language@group{user@active}{user@generic@active}%

1408 \bbl@active@def#1\user@group{user@generic@active}{language@active}%

1409 \expandafter\edef\csname#2@sh@#1@@\endcsname{%

1410 \expandafter\noexpand\csname normal@char#1\endcsname}%

1411 \expandafter\edef\csname#2@sh@#1@\string\protect@\endcsname{%

1412 \expandafter\noexpand\csname user@active#1\endcsname}}%

1413 \@empty}

1414 \newcommand\defineshorthand[3][user]{%

1415 \edef\bbl@tempa{\zap@space#1 \@empty}%

1416 \bbl@for\bbl@tempb\bbl@tempa{%

1417 \if*\expandafter\@car\bbl@tempb\@nil

1418 \edef\bbl@tempb{user@\expandafter\@gobble\bbl@tempb}%

1419 \@expandtwoargs

1420 \bbl@set@user@generic{\expandafter\string\@car#2\@nil}\bbl@tempb

1421 \fi

1422 \declare@shorthand{\bbl@tempb}{#2}{#3}}}

35

\languageshorthands A user level command to change the language from which shorthands are

used. Unfortunately, babel currently does not keep track of defined groups, and therefore there is no

way to catch a possible change in casing to fix it in the same way languages names are fixed.

1423 \def\languageshorthands#1{%

1424 \bbl@ifsamestring{none}{#1}{}{%

1425 \bbl@once{short-\localename-#1}{%

1426 \bbl@info{'\localename' activates '#1' shorthands.\\Reported}}}%

1427 \def\language@group{#1}}

\aliasshorthand Deprecated. First the new shorthand needs to be initialized. Then, we define the new

shorthand in terms of the original one, but note with \aliasshorthands{"}{/} is

\active@prefix /\active@char/, so we still need to let the latter to \active@char".

1428 \def\aliasshorthand#1#2{%

1429 \bbl@ifshorthand{#2}%

1430 {\expandafter\ifx\csname active@char\string#2\endcsname\relax

1431 \ifx\document\@notprerr

1432 \@notshorthand{#2}%

1433 \else

1434 \initiate@active@char{#2}%

1435 \bbl@ccarg\let{active@char\string#2}{active@char\string#1}%

1436 \bbl@ccarg\let{normal@char\string#2}{normal@char\string#1}%

1437 \bbl@activate{#2}%

1438 \fi

1439 \fi}%

1440 {\bbl@error{shorthand-is-off}{}{#2}{}}}

\@notshorthand

1441 \def\@notshorthand#1{\bbl@error{not-a-shorthand}{#1}{}{}}

\shorthandon

\shorthandoff The first level definition of these macros just passes the argument on to

\bbl@switch@sh, adding \@nil at the end to denote the end of the list of characters.

1442 \newcommand*\shorthandon[1]{\bbl@switch@sh\@ne#1\@nnil}

1443 \DeclareRobustCommand*\shorthandoff{%

1444 \@ifstar{\bbl@shorthandoff\tw@}{\bbl@shorthandoff\z@}}

1445 \def\bbl@shorthandoff#1#2{\bbl@switch@sh#1#2\@nnil}

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and

subsequently switches the category code of the shorthand character according to the first argument

of \bbl@switch@sh.

But before any of this switching takes place we make sure that the character we are dealing with is

known as a shorthand character. If it is, a macro such as \active@char" should exist.

Switching off and on is easy – we just set the category code to ‘other’ (12) and \active. With the

starred version, the original catcode and the original definition, saved in @initiate@active@char,

are restored.

1446 \def\bbl@switch@sh#1#2{%

1447 \ifx#2\@nnil\else

1448 \bbl@ifunset{bbl@active@\string#2}%

1449 {\bbl@error{not-a-shorthand-b}{}{#2}{}}%

1450 {\ifcase#1% off, on, off*

1451 \catcode`#212\relax

1452 \or

1453 \catcode`#2\active

1454 \bbl@ifunset{bbl@shdef@\string#2}%

1455 {}%

1456 {\bbl@withactive{\expandafter\let\expandafter}#2%

1457 \csname bbl@shdef@\string#2\endcsname

1458 \bbl@csarg\let{shdef@\string#2}\relax}%

1459 \ifcase\bbl@activated\or

1460 \bbl@activate{#2}%

36

1461 \else

1462 \bbl@deactivate{#2}%

1463 \fi

1464 \or

1465 \bbl@ifunset{bbl@shdef@\string#2}%

1466 {\bbl@withactive{\bbl@csarg\let{shdef@\string#2}}#2}%

1467 {}%

1468 \csname bbl@oricat@\string#2\endcsname

1469 \csname bbl@oridef@\string#2\endcsname

1470 \fi}%

1471 \bbl@afterfi\bbl@switch@sh#1%

1472 \fi}

Note the value is that at the expansion time; e.g., in the preamble shorthands are usually

deactivated.

1473 \def\babelshorthand{\active@prefix\babelshorthand\bbl@putsh}

1474 \def\bbl@putsh#1{%

1475 \bbl@ifunset{bbl@active@\string#1}%

1476 {\bbl@putsh@i#1\@empty\@nnil}%

1477 {\csname bbl@active@\string#1\endcsname}}

1478 \def\bbl@putsh@i#1#2\@nnil{%

1479 \csname\language@group @sh@\string#1@%

1480 \ifx\@empty#2\else\string#2@\fi\endcsname}

1481 %

1482 \ifx\bbl@opt@shorthands\@nnil\else

1483 \let\bbl@s@initiate@active@char\initiate@active@char

1484 \def\initiate@active@char#1{%

1485 \bbl@ifshorthand{#1}{\bbl@s@initiate@active@char{#1}}{}}

1486 \let\bbl@s@switch@sh\bbl@switch@sh

1487 \def\bbl@switch@sh#1#2{%

1488 \ifx#2\@nnil\else

1489 \bbl@afterfi

1490 \bbl@ifshorthand{#2}{\bbl@s@switch@sh#1{#2}}{\bbl@switch@sh#1}%

1491 \fi}

1492 \let\bbl@s@activate\bbl@activate

1493 \def\bbl@activate#1{%

1494 \bbl@ifshorthand{#1}{\bbl@s@activate{#1}}{}}

1495 \let\bbl@s@deactivate\bbl@deactivate

1496 \def\bbl@deactivate#1{%

1497 \bbl@ifshorthand{#1}{\bbl@s@deactivate{#1}}{}}

1498 \fi

You may want to test if a character is a shorthand. Note it does not test whether the shorthand is on

or off.

1499 \newcommand\ifbabelshorthand[3]{\bbl@ifunset{bbl@active@\string#1}{#3}{#2}}

\bbl@prim@s

\bbl@pr@m@s One of the internal macros that are involved in substituting \prime for each right

quote in mathmode is \prim@s. This checks if the next character is a right quote. When the right

quote is active, the definition of this macro needs to be adapted to look also for an active right quote;

the hat could be active, too.

1500 \def\bbl@prim@s{%

1501 \prime\futurelet\@let@token\bbl@pr@m@s}

1502 \def\bbl@if@primes#1#2{%

1503 \ifx#1\@let@token

1504 \expandafter\@firstoftwo

1505 \else\ifx#2\@let@token

1506 \bbl@afterelse\expandafter\@firstoftwo

1507 \else

1508 \bbl@afterfi\expandafter\@secondoftwo

1509 \fi\fi}

1510 \begingroup

1511 \catcode`\^=7 \catcode`*=\active \lccode`*=`\^

37

1512 \catcode`\'=12 \catcode`\"=\active \lccode`\"=`\'

1513 \lowercase{%

1514 \gdef\bbl@pr@m@s{%

1515 \bbl@if@primes"'%

1516 \pr@@@s

1517 {\bbl@if@primes*^\pr@@@t\egroup}}}

1518 \endgroup

Usually the ~ is active and expands to \penalty\@M\ . When it is written to the aux file it is written

expanded. To prevent that and to be able to use the character ~ as a start character for a shorthand, it

is redefined here as a one character shorthand on system level. The system declaration is in most

cases redundant (when ~ is still a non-break space), and in some cases is inconvenient (if ~ has been

redefined); however, for backward compatibility it is maintained (some existing documents may rely

on the babel value).

1519 \initiate@active@char{~}

1520 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }

1521 \bbl@activate{~}

\OT1dqpos

\T1dqpos The position of the double quote character is different for the OT1 and T1 encodings. It will

later be selected using the \f@encodingmacro. Therefore we define two macros here to store the

position of the character in these encodings.

1522 \expandafter\def\csname OT1dqpos\endcsname{127}

1523 \expandafter\def\csname T1dqpos\endcsname{4}

When the macro \f@encoding is undefined (as it is in plain TEX) we define it here to expand to OT1

1524 \ifx\f@encoding\@undefined

1525 \def\f@encoding{OT1}

1526 \fi

4.9. Language attributes

Language attributes provide a means to give the user control over which features of the language

definition files he wants to enable.

\languageattribute The macro \languageattribute checks whether its arguments are valid and

then activates the selected language attribute. First check whether the language is known, and then

process each attribute in the list.

1527 \bbl@trace{Language attributes}

1528 \newcommand\languageattribute[2]{%

1529 \def\bbl@tempc{#1}%

1530 \bbl@fixname\bbl@tempc

1531 \bbl@iflanguage\bbl@tempc{%

1532 \bbl@vforeach{#2}{%

To make sure each attribute is selected only once, we store the already selected attributes in

\bbl@known@attribs. When that control sequence is not yet defined this attribute is certainly not

selected before.

1533 \ifx\bbl@known@attribs\@undefined

1534 \in@false

1535 \else

1536 \bbl@xin@{,\bbl@tempc-##1,}{,\bbl@known@attribs,}%

1537 \fi

1538 \ifin@

1539 \bbl@warning{%

1540 You have more than once selected the attribute '##1'\\%

1541 for language #1. Reported}%

1542 \else

When we end up here the attribute is not selected before. So, we add it to the list of selected

attributes and execute the associated TEX-code.

1543 \bbl@info{Activated '##1' attribute for\\%

38

1544 '\bbl@tempc'. Reported}%

1545 \bbl@exp{%

1546 \\\bbl@add@list\\\bbl@known@attribs{\bbl@tempc-##1}}%

1547 \edef\bbl@tempa{\bbl@tempc-##1}%

1548 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes%

1549 {\csname\bbl@tempc @attr@##1\endcsname}%

1550 {\@attrerr{\bbl@tempc}{##1}}%

1551 \fi}}}

1552 \@onlypreamble\languageattribute

The error text to be issued when an unknown attribute is selected.

1553 \newcommand*{\@attrerr}[2]{%

1554 \bbl@error{unknown-attribute}{#1}{#2}{}}

\bbl@declare@ttribute This command adds the new language/attribute combination to the list of

known attributes.

Then it defines a control sequence to be executed when the attribute is used in a document. The

result of this should be that the macro \extras... for the current language is extended, otherwise

the attribute will not work as its code is removed from memory at \begin{document}.

1555 \def\bbl@declare@ttribute#1#2#3{%

1556 \bbl@xin@{,#2,}{,\BabelModifiers,}%

1557 \ifin@

1558 \AfterBabelLanguage{#1}{\languageattribute{#1}{#2}}%

1559 \fi

1560 \bbl@add@list\bbl@attributes{#1-#2}%

1561 \expandafter\def\csname#1@attr@#2\endcsname{#3}}

\bbl@ifattributeset This internal macro has 4 arguments. It can be used to interpret TEX code based

on whether a certain attribute was set. This command should appear inside the argument to

\AtBeginDocument because the attributes are set in the document preamble, after babel is loaded.

The first argument is the language, the second argument the attribute being checked, and the third

and fourth arguments are the true and false clauses.

1562 \def\bbl@ifattributeset#1#2#3#4{%

1563 \ifx\bbl@known@attribs\@undefined

1564 \in@false

1565 \else

1566 \bbl@xin@{,#1-#2,}{,\bbl@known@attribs,}%

1567 \fi

1568 \ifin@

1569 \bbl@afterelse#3%

1570 \else

1571 \bbl@afterfi#4%

1572 \fi}

\bbl@ifknown@ttrib An internal macro to check whether a given language/attribute is known. The

macro takes 4 arguments, the language/attribute, the attribute list, the TEX-code to be executed when

the attribute is known and the TEX-code to be executed otherwise.

We first assume the attribute is unknown. Then we loop over the list of known attributes, trying to

find a match.

1573 \def\bbl@ifknown@ttrib#1#2{%

1574 \let\bbl@tempa\@secondoftwo

1575 \bbl@loopx\bbl@tempb{#2}{%

1576 \expandafter\in@\expandafter{\expandafter,\bbl@tempb,}{,#1,}%

1577 \ifin@

1578 \let\bbl@tempa\@firstoftwo

1579 \else

1580 \fi}%

1581 \bbl@tempa}

39

\bbl@clear@ttribs This macro removes all the attribute code from LATEX’s memory at

\begin{document} time (if any is present).

1582 \def\bbl@clear@ttribs{%

1583 \ifx\bbl@attributes\@undefined\else

1584 \bbl@loopx\bbl@tempa{\bbl@attributes}{%

1585 \expandafter\bbl@clear@ttrib\bbl@tempa.}%

1586 \let\bbl@attributes\@undefined

1587 \fi}

1588 \def\bbl@clear@ttrib#1-#2.{%

1589 \expandafter\let\csname#1@attr@#2\endcsname\@undefined}

1590 \AtBeginDocument{\bbl@clear@ttribs}

4.10. Support for saving and redefining macros

To save the meaning of control sequences using \babel@save, we use temporary control sequences.

To save hash table entries for these control sequences, we don’t use the name of the control sequence

to be saved to construct the temporary name. Instead we simply use the value of a counter, which is

reset to zero each time we begin to save new values. This works well because we release the saved

meanings before we begin to save a new set of control sequence meanings (see \selectlanguage

and \originalTeX). Note undefined macros are not undefined any more when saved – they are

\relax’ed.

\babel@savecnt

\babel@beginsave The initialization of a new save cycle: reset the counter to zero.

1591 \bbl@trace{Macros for saving definitions}

1592 \def\babel@beginsave{\babel@savecnt\z@}

Before it’s forgotten, allocate the counter and initialize all.

1593 \newcount\babel@savecnt

1594 \babel@beginsave

\babel@save

\babel@savevariable The macro \babel@save〈csname〉 saves the current meaning of the control

sequence 〈csname〉 to \originalTeX (which has to be expandable, i.e., you shouldn’t let it to \relax).

To do this, we let the current meaning to a temporary control sequence, the restore commands are

appended to \originalTeX and the counter is incremented. The macro

\babel@savevariable〈variable〉 saves the value of the variable. 〈variable〉 can be anything allowed

after the \the primitive. To avoid messing saved definitions up, they are saved only the very first

time.

1595 \def\babel@save#1{%

1596 \def\bbl@tempa{{,#1,}}% Clumsy, for Plain

1597 \expandafter\bbl@add\expandafter\bbl@tempa\expandafter{%

1598 \expandafter{\expandafter,\bbl@savedextras,}}%

1599 \expandafter\in@\bbl@tempa

1600 \ifin@\else

1601 \bbl@add\bbl@savedextras{,#1,}%

1602 \bbl@carg\let{babel@\number\babel@savecnt}#1\relax

1603 \toks@\expandafter{\originalTeX\let#1=}%

1604 \bbl@exp{%

1605 \def\\\originalTeX{\the\toks@\<babel@\number\babel@savecnt>\relax}}%

1606 \advance\babel@savecnt\@ne

1607 \fi}

1608 \def\babel@savevariable#1{%

1609 \toks@\expandafter{\originalTeX #1=}%

1610 \bbl@exp{\def\\\originalTeX{\the\toks@\the#1\relax}}}

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine it to

call the original macro with the ‘sanitized’ argument. The reason why we do it this way is that we

don’t want to redefine the LATEX macros completely in case their definitions change (they have

changed in the past). A macro named \macro will be saved new control sequences named

\org@macro.

40

1611 \def\bbl@redefine#1{%

1612 \edef\bbl@tempa{\bbl@stripslash#1}%

1613 \expandafter\let\csname org@\bbl@tempa\endcsname#1%

1614 \expandafter\def\csname\bbl@tempa\endcsname}

1615 \@onlypreamble\bbl@redefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands

such as \ifthenelse.

1616 \def\bbl@redefine@long#1{%

1617 \edef\bbl@tempa{\bbl@stripslash#1}%

1618 \expandafter\let\csname org@\bbl@tempa\endcsname#1%

1619 \long\expandafter\def\csname\bbl@tempa\endcsname}

1620 \@onlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but whichmight be robust we need a slightly

more intelligent macro. A robust command foo is defined to expand to \protect\foo . So it is

necessary to check whether \foo exists. The result is that the command that is being redefined is

always robust afterwards. Therefore all we need to do now is define \foo .

1621 \def\bbl@redefinerobust#1{%

1622 \edef\bbl@tempa{\bbl@stripslash#1}%

1623 \bbl@ifunset{\bbl@tempa\space}%

1624 {\expandafter\let\csname org@\bbl@tempa\endcsname#1%

1625 \bbl@exp{\def\\#1{\\\protect\<\bbl@tempa\space>}}}%

1626 {\bbl@exp{\let\<org@\bbl@tempa>\<\bbl@tempa\space>}}%

1627 \@namedef{\bbl@tempa\space}}

1628 \@onlypreamble\bbl@redefinerobust

4.11. French spacing

\bbl@frenchspacing

\bbl@nonfrenchspacing Some languages need to have \frenchspacing in effect. Others don’t want

that. The command \bbl@frenchspacing switches it on when it isn’t already in effect and

\bbl@nonfrenchspacing switches it off if necessary.

1629 \def\bbl@frenchspacing{%

1630 \ifnum\the\sfcode`\.=\@m

1631 \let\bbl@nonfrenchspacing\relax

1632 \else

1633 \frenchspacing

1634 \let\bbl@nonfrenchspacing\nonfrenchspacing

1635 \fi}

1636 \let\bbl@nonfrenchspacing\nonfrenchspacing

A more refined way to switch the catcodes is done with ini files. Here an auxiliary macro is

defined, but the main part is in \babelprovide. This new method should be ideally the default one.

1637 \let\bbl@elt\relax

1638 \edef\bbl@fs@chars{%

1639 \bbl@elt{\string.}\@m{3000}\bbl@elt{\string?}\@m{3000}%

1640 \bbl@elt{\string!}\@m{3000}\bbl@elt{\string:}\@m{2000}%

1641 \bbl@elt{\string;}\@m{1500}\bbl@elt{\string,}\@m{1250}}

1642 \def\bbl@pre@fs{%

1643 \def\bbl@elt##1##2##3{\sfcode`##1=\the\sfcode`##1\relax}%

1644 \edef\bbl@save@sfcodes{\bbl@fs@chars}}%

1645 \def\bbl@post@fs{%

1646 \bbl@save@sfcodes

1647 \edef\bbl@tempa{\bbl@cl{frspc}}%

1648 \edef\bbl@tempa{\expandafter\@car\bbl@tempa\@nil}%

1649 \if u\bbl@tempa % do nothing

1650 \else\if n\bbl@tempa % non french

1651 \def\bbl@elt##1##2##3{%

1652 \ifnum\sfcode`##1=##2\relax

1653 \babel@savevariable{\sfcode`##1}%

41

1654 \sfcode`##1=##3\relax

1655 \fi}%

1656 \bbl@fs@chars

1657 \else\if y\bbl@tempa % french

1658 \def\bbl@elt##1##2##3{%

1659 \ifnum\sfcode`##1=##3\relax

1660 \babel@savevariable{\sfcode`##1}%

1661 \sfcode`##1=##2\relax

1662 \fi}%

1663 \bbl@fs@chars

1664 \fi\fi\fi}

4.12. Hyphens

\babelhyphenation This macro saves hyphenation exceptions. Two macros are used to store them:

\bbl@hyphenation@ for the global ones and \bbl@hyphenation@〈language〉 for language ones. See
\bbl@patterns above for further details. We make sure there is a space between words when

multiple commands are used.

1665 \bbl@trace{Hyphens}

1666 \@onlypreamble\babelhyphenation

1667 \AtEndOfPackage{%

1668 \newcommand\babelhyphenation[2][\@empty]{%

1669 \ifx\bbl@hyphenation@\relax

1670 \let\bbl@hyphenation@\@empty

1671 \fi

1672 \ifx\bbl@hyphlist\@empty\else

1673 \bbl@warning{%

1674 You must not intermingle \string\selectlanguage\space and\\%

1675 \string\babelhyphenation\space or some exceptions will not\\%

1676 be taken into account. Reported}%

1677 \fi

1678 \ifx\@empty#1%

1679 \protected@edef\bbl@hyphenation@{\bbl@hyphenation@\space#2}%

1680 \else

1681 \bbl@vforeach{#1}{%

1682 \def\bbl@tempa{##1}%

1683 \bbl@fixname\bbl@tempa

1684 \bbl@iflanguage\bbl@tempa{%

1685 \bbl@csarg\protected@edef{hyphenation@\bbl@tempa}{%

1686 \bbl@ifunset{bbl@hyphenation@\bbl@tempa}%

1687 {}%

1688 {\csname bbl@hyphenation@\bbl@tempa\endcsname\space}%

1689 #2}}}%

1690 \fi}}

\babelhyphenmins Only LATEX (basically because it’s defined with a LATEX tool).

1691 \ifx\NewDocumentCommand\@undefined\else

1692 \NewDocumentCommand\babelhyphenmins{sommo}{%

1693 \IfNoValueTF{#2}%

1694 {\protected@edef\bbl@hyphenmins@{\set@hyphenmins{#3}{#4}}%

1695 \IfValueT{#5}{%

1696 \protected@edef\bbl@hyphenatmin@{\hyphenationmin=#5\relax}}%

1697 \IfBooleanT{#1}{%

1698 \lefthyphenmin=#3\relax

1699 \righthyphenmin=#4\relax

1700 \IfValueT{#5}{\hyphenationmin=#5\relax}}}%

1701 {\edef\bbl@tempb{\zap@space#2 \@empty}%

1702 \bbl@for\bbl@tempa\bbl@tempb{%

1703 \@namedef{bbl@hyphenmins@\bbl@tempa}{\set@hyphenmins{#3}{#4}}%

1704 \IfValueT{#5}{%

1705 \@namedef{bbl@hyphenatmin@\bbl@tempa}{\hyphenationmin=#5\relax}}}%

1706 \IfBooleanT{#1}{\bbl@error{hyphenmins-args}{}{}{}}}}

42

1707 \fi

\bbl@allowhyphens This macro makes hyphenation possible. Basically its definition is nothing more

than \nobreak \hskip 0pt plus 0pt. TEX begins and ends a word for hyphenation at a glue node.

The penalty prevents a linebreak at this glue node.

1708 \def\bbl@allowhyphens{\ifvmode\else\nobreak\hskip\z@skip\fi}

1709 \def\bbl@t@one{T1}

1710 \def\allowhyphens{\ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}

\babelhyphen Macros to insert common hyphens. Note the space before @ in \babelhyphen. Instead

of protecting it with \DeclareRobustCommand, which could insert a \relax, we use the same

procedure as shorthands, with \active@prefix.

1711 \newcommand\babelnullhyphen{\char\hyphenchar\font}

1712 \def\babelhyphen{\active@prefix\babelhyphen\bbl@hyphen}

1713 \def\bbl@hyphen{%

1714 \@ifstar{\bbl@hyphen@i @}{\bbl@hyphen@i\@empty}}

1715 \def\bbl@hyphen@i#1#2{%

1716 \lowercase{\bbl@ifunset{bbl@hy@#1#2\@empty}}%

1717 {\csname bbl@#1usehyphen\endcsname{\discretionary{#2}{}{#2}}}%

1718 {\lowercase{\csname bbl@hy@#1#2\@empty\endcsname}}}

The following two commands are used to wrap the “hyphen” and set the behavior of the rest of the

word – the version with a single @ is used when further hyphenation is allowed, while that with @@ if

no more hyphens are allowed. In both cases, if the hyphen is preceded by a positive space, breaking

after the hyphen is disallowed.

There should not be a discretionary after a hyphen at the beginning of a word, so it is prevented if

preceded by a skip. Unfortunately, this does handle cases like “(-suffix)”. \nobreak is always preceded

by \leavevmode, in case the shorthand starts a paragraph.

1719 \def\bbl@usehyphen#1{%

1720 \leavevmode

1721 \ifdim\lastskip>\z@\mbox{#1}\else\nobreak#1\fi

1722 \nobreak\hskip\z@skip}

1723 \def\bbl@@usehyphen#1{%

1724 \leavevmode\ifdim\lastskip>\z@\mbox{#1}\else#1\fi}

The following macro inserts the hyphen char.

1725 \def\bbl@hyphenchar{%

1726 \ifnum\hyphenchar\font=\m@ne

1727 \babelnullhyphen

1728 \else

1729 \char\hyphenchar\font

1730 \fi}

Finally, we define the hyphen “types”. Their names will not change, so you may use them in ldf’s.

After a space, the \mbox in \bbl@hy@nobreak is redundant.

1731 \def\bbl@hy@soft{\bbl@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}

1732 \def\bbl@hy@@soft{\bbl@@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}

1733 \def\bbl@hy@hard{\bbl@usehyphen\bbl@hyphenchar}

1734 \def\bbl@hy@@hard{\bbl@@usehyphen\bbl@hyphenchar}

1735 \def\bbl@hy@nobreak{\bbl@usehyphen{\mbox{\bbl@hyphenchar}}}

1736 \def\bbl@hy@@nobreak{\mbox{\bbl@hyphenchar}}

1737 \def\bbl@hy@repeat{%

1738 \bbl@usehyphen{%

1739 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}

1740 \def\bbl@hy@@repeat{%

1741 \bbl@@usehyphen{%

1742 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}

1743 \def\bbl@hy@empty{\hskip\z@skip}

1744 \def\bbl@hy@@empty{\discretionary{}{}{}}

\bbl@disc For some languages the macro \bbl@disc is used to ease the insertion of discretionaries

for letters that behave ‘abnormally’ at a breakpoint.

1745 \def\bbl@disc#1#2{\nobreak\discretionary{#2-}{}{#1}\bbl@allowhyphens}

43

4.13. Multiencoding strings

The aim following commands is to provide a common interface for strings in several encodings. They

also contains several hooks which can be used by luatex and xetex. The code is organized here with

pseudo-guards, so we start with the basic commands.

Tools But first, a tool. It makes global a local variable. This is not the best solution, but it works.

1746 \bbl@trace{Multiencoding strings}

1747 \def\bbl@toglobal#1{\global\let#1#1}

The following option is currently no-op. It was meant for the deprecated \SetCase.

1748 〈〈∗More package options〉〉 ≡
1749 \DeclareOption{nocase}{}

1750 〈〈/More package options〉〉

The following package options control the behavior of \SetString.

1751 〈〈∗More package options〉〉 ≡
1752 \let\bbl@opt@strings\@nnil % accept strings=value

1753 \DeclareOption{strings}{\def\bbl@opt@strings{\BabelStringsDefault}}

1754 \DeclareOption{strings=encoded}{\let\bbl@opt@strings\relax}

1755 \def\BabelStringsDefault{generic}

1756 〈〈/More package options〉〉

Main command This is the main command. With the first use it is redefined to omit the basic

setup in subsequent blocks. We make sure strings contain actual letters in the range 128-255, not

active characters.

1757 \@onlypreamble\StartBabelCommands

1758 \def\StartBabelCommands{%

1759 \begingroup

1760 \@tempcnta="7F

1761 \def\bbl@tempa{%

1762 \ifnum\@tempcnta>"FF\else

1763 \catcode\@tempcnta=11

1764 \advance\@tempcnta\@ne

1765 \expandafter\bbl@tempa

1766 \fi}%

1767 \bbl@tempa

1768 <@Macros local to BabelCommands@>

1769 \def\bbl@provstring##1##2{%

1770 \providecommand##1{##2}%

1771 \bbl@toglobal##1}%

1772 \global\let\bbl@scafter\@empty

1773 \let\StartBabelCommands\bbl@startcmds

1774 \ifx\BabelLanguages\relax

1775 \let\BabelLanguages\CurrentOption

1776 \fi

1777 \begingroup

1778 \let\bbl@screset\@nnil % local flag - disable 1st stopcommands

1779 \StartBabelCommands}

1780 \def\bbl@startcmds{%

1781 \ifx\bbl@screset\@nnil\else

1782 \bbl@usehooks{stopcommands}{}%

1783 \fi

1784 \endgroup

1785 \begingroup

1786 \@ifstar

1787 {\ifx\bbl@opt@strings\@nnil

1788 \let\bbl@opt@strings\BabelStringsDefault

1789 \fi

1790 \bbl@startcmds@i}%

1791 \bbl@startcmds@i}

1792 \def\bbl@startcmds@i#1#2{%

1793 \edef\bbl@L{\zap@space#1 \@empty}%

44

1794 \edef\bbl@G{\zap@space#2 \@empty}%

1795 \bbl@startcmds@ii}

1796 \let\bbl@startcommands\StartBabelCommands

Parse the encoding info to get the label, input, and font parts.

Select the behavior of \SetString. There are two main cases, depending of if there is an optional

argument: without it and strings=encoded, strings are defined always; otherwise, they are set only

if they are still undefined (i.e., fallback values). With labelled blocks and strings=encoded, define

the strings, but with another value, define strings only if the current label or font encoding is the

value of strings; otherwise (i.e., no strings or a block whose label is not in strings=) do nothing.

We presume the current block is not loaded, and therefore set (above) a couple of default values to

gobble the arguments. Then, these macros are redefined if necessary according to several

parameters.

1797 \newcommand\bbl@startcmds@ii[1][\@empty]{%

1798 \let\SetString\@gobbletwo

1799 \let\bbl@stringdef\@gobbletwo

1800 \let\AfterBabelCommands\@gobble

1801 \ifx\@empty#1%

1802 \def\bbl@sc@label{generic}%

1803 \def\bbl@encstring##1##2{%

1804 \ProvideTextCommandDefault##1{##2}%

1805 \bbl@toglobal##1%

1806 \expandafter\bbl@toglobal\csname\string?\string##1\endcsname}%

1807 \let\bbl@sctest\in@true

1808 \else

1809 \let\bbl@sc@charset\space % <- zapped below

1810 \let\bbl@sc@fontenc\space % <- " "

1811 \def\bbl@tempa##1=##2\@nil{%

1812 \bbl@csarg\edef{sc@\zap@space##1 \@empty}{##2 }}%

1813 \bbl@vforeach{label=#1}{\bbl@tempa##1\@nil}%

1814 \def\bbl@tempa##1 ##2{% space -> comma

1815 ##1%

1816 \ifx\@empty##2\else\ifx,##1,\else,\fi\bbl@afterfi\bbl@tempa##2\fi}%

1817 \edef\bbl@sc@fontenc{\expandafter\bbl@tempa\bbl@sc@fontenc\@empty}%

1818 \edef\bbl@sc@label{\expandafter\zap@space\bbl@sc@label\@empty}%

1819 \edef\bbl@sc@charset{\expandafter\zap@space\bbl@sc@charset\@empty}%

1820 \def\bbl@encstring##1##2{%

1821 \bbl@foreach\bbl@sc@fontenc{%

1822 \bbl@ifunset{T@####1}%

1823 {}%

1824 {\ProvideTextCommand##1{####1}{##2}%

1825 \bbl@toglobal##1%

1826 \expandafter

1827 \bbl@toglobal\csname####1\string##1\endcsname}}}%

1828 \def\bbl@sctest{%

1829 \bbl@xin@{,\bbl@opt@strings,}{,\bbl@sc@label,\bbl@sc@fontenc,}}%

1830 \fi

1831 \ifx\bbl@opt@strings\@nnil % i.e., no strings key -> defaults

1832 \else\ifx\bbl@opt@strings\relax % i.e., strings=encoded

1833 \let\AfterBabelCommands\bbl@aftercmds

1834 \let\SetString\bbl@setstring

1835 \let\bbl@stringdef\bbl@encstring

1836 \else % i.e., strings=value

1837 \bbl@sctest

1838 \ifin@

1839 \let\AfterBabelCommands\bbl@aftercmds

1840 \let\SetString\bbl@setstring

1841 \let\bbl@stringdef\bbl@provstring

1842 \fi\fi\fi

1843 \bbl@scswitch

1844 \ifx\bbl@G\@empty

1845 \def\SetString##1##2{%

1846 \bbl@error{missing-group}{##1}{}{}}%

45

1847 \fi

1848 \ifx\@empty#1%

1849 \bbl@usehooks{defaultcommands}{}%

1850 \else

1851 \@expandtwoargs

1852 \bbl@usehooks{encodedcommands}{{\bbl@sc@charset}{\bbl@sc@fontenc}}%

1853 \fi}

There are two versions of \bbl@scswitch. The first version is used when ldfs are read, and it

makes sure \〈group〉〈language〉 is reset, but only once (\bbl@screset is used to keep track of this).

The second version is used in the preamble and packages loaded after babel and does nothing.

The macro \bbl@forlang loops \bbl@L but its body is executed only if the value is in

\BabelLanguages (inside babel) or \date〈language〉 is defined (after babel has been loaded). There

are also two version of \bbl@forlang. The first one skips the current iteration if the language is not

in \BabelLanguages (used in ldfs), and the second one skips undefined languages (after babel has

been loaded) .

1854 \def\bbl@forlang#1#2{%

1855 \bbl@for#1\bbl@L{%

1856 \bbl@xin@{,#1,}{,\BabelLanguages,}%

1857 \ifin@#2\relax\fi}}

1858 \def\bbl@scswitch{%

1859 \bbl@forlang\bbl@tempa{%

1860 \ifx\bbl@G\@empty\else

1861 \ifx\SetString\@gobbletwo\else

1862 \edef\bbl@GL{\bbl@G\bbl@tempa}%

1863 \bbl@xin@{,\bbl@GL,}{,\bbl@screset,}%

1864 \ifin@\else

1865 \global\expandafter\let\csname\bbl@GL\endcsname\@undefined

1866 \xdef\bbl@screset{\bbl@screset,\bbl@GL}%

1867 \fi

1868 \fi

1869 \fi}}

1870 \AtEndOfPackage{%

1871 \def\bbl@forlang#1#2{\bbl@for#1\bbl@L{\bbl@ifunset{date#1}{}{#2}}}%

1872 \let\bbl@scswitch\relax}

1873 \@onlypreamble\EndBabelCommands

1874 \def\EndBabelCommands{%

1875 \bbl@usehooks{stopcommands}{}%

1876 \endgroup

1877 \endgroup

1878 \bbl@scafter}

1879 \let\bbl@endcommands\EndBabelCommands

Now we define commands to be used inside \StartBabelCommands.

Strings The following macro is the actual definition of \SetString when it is “active”

First save the “switcher”. Create it if undefined. Strings are defined only if undefined (i.e., like

\providescommand). With the event stringprocess you can preprocess the string by manipulating

the value of \BabelString. If there are several hooks assigned to this event, preprocessing is done in

the same order as defined. Finally, the string is set.

1880 \def\bbl@setstring#1#2{% e.g., \prefacename{<string>}

1881 \bbl@forlang\bbl@tempa{%

1882 \edef\bbl@LC{\bbl@tempa\bbl@stripslash#1}%

1883 \bbl@ifunset{\bbl@LC}% e.g., \germanchaptername

1884 {\bbl@exp{%

1885 \global\\\bbl@add\<\bbl@G\bbl@tempa>{\\\bbl@scset\\#1\<\bbl@LC>}}}%

1886 {}%

1887 \def\BabelString{#2}%

1888 \bbl@usehooks{stringprocess}{}%

1889 \expandafter\bbl@stringdef

1890 \csname\bbl@LC\expandafter\endcsname\expandafter{\BabelString}}}

A little auxiliary command sets the string. Formerly used with casing. Very likely no longer

necessary, although it’s used in \setlocalecaption.

46

1891 \def\bbl@scset#1#2{\def#1{#2}}

Define \SetStringLoop, which is actually set inside \StartBabelCommands. The current definition

is somewhat complicated because we need a count, but \count@ is not under our control (remember

\SetStringmay call hooks). Instead of defining a dedicated count, we just “pre-expand” its value.

1892 〈〈∗Macros local to BabelCommands〉〉 ≡
1893 \def\SetStringLoop##1##2{%

1894 \def\bbl@templ####1{\expandafter\noexpand\csname##1\endcsname}%

1895 \count@\z@

1896 \bbl@loop\bbl@tempa{##2}{% empty items and spaces are ok

1897 \advance\count@\@ne

1898 \toks@\expandafter{\bbl@tempa}%

1899 \bbl@exp{%

1900 \\\SetString\bbl@templ{\romannumeral\count@}{\the\toks@}%

1901 \count@=\the\count@\relax}}}%

1902 〈〈/Macros local to BabelCommands〉〉

Delaying code Now the definition of \AfterBabelCommands when it is activated.

1903 \def\bbl@aftercmds#1{%

1904 \toks@\expandafter{\bbl@scafter#1}%

1905 \xdef\bbl@scafter{\the\toks@}}

Case mapping The command \SetCase is deprecated. Currently it consists in a definition with a

hack just for backward compatibility in the macro mapping.

1906 〈〈∗Macros local to BabelCommands〉〉 ≡
1907 \newcommand\SetCase[3][]{%

1908 \def\bbl@tempa####1####2{%

1909 \ifx####1\@empty\else

1910 \bbl@carg\bbl@add{extras\CurrentOption}{%

1911 \bbl@carg\babel@save{c__text_uppercase_\string####1_tl}%

1912 \bbl@carg\def{c__text_uppercase_\string####1_tl}{####2}%

1913 \bbl@carg\babel@save{c__text_lowercase_\string####2_tl}%

1914 \bbl@carg\def{c__text_lowercase_\string####2_tl}{####1}}%

1915 \expandafter\bbl@tempa

1916 \fi}%

1917 \bbl@tempa##1\@empty\@empty

1918 \bbl@carg\bbl@toglobal{extras\CurrentOption}}%

1919 〈〈/Macros local to BabelCommands〉〉

Macros to deal with case mapping for hyphenation. To decide if the document is monolingual or

multilingual, we make a rough guess – just see if there is a comma in the languages list, built in the

first pass of the package options.

1920 〈〈∗Macros local to BabelCommands〉〉 ≡
1921 \newcommand\SetHyphenMap[1]{%

1922 \bbl@forlang\bbl@tempa{%

1923 \expandafter\bbl@stringdef

1924 \csname\bbl@tempa @bbl@hyphenmap\endcsname{##1}}}%

1925 〈〈/Macros local to BabelCommands〉〉

There are 3 helper macros which do most of the work for you.

1926 \newcommand\BabelLower[2]{% one to one.

1927 \ifnum\lccode#1=#2\else

1928 \babel@savevariable{\lccode#1}%

1929 \lccode#1=#2\relax

1930 \fi}

1931 \newcommand\BabelLowerMM[4]{% many-to-many

1932 \@tempcnta=#1\relax

1933 \@tempcntb=#4\relax

1934 \def\bbl@tempa{%

1935 \ifnum\@tempcnta>#2\else

1936 \@expandtwoargs\BabelLower{\the\@tempcnta}{\the\@tempcntb}%

1937 \advance\@tempcnta#3\relax

47

1938 \advance\@tempcntb#3\relax

1939 \expandafter\bbl@tempa

1940 \fi}%

1941 \bbl@tempa}

1942 \newcommand\BabelLowerMO[4]{% many-to-one

1943 \@tempcnta=#1\relax

1944 \def\bbl@tempa{%

1945 \ifnum\@tempcnta>#2\else

1946 \@expandtwoargs\BabelLower{\the\@tempcnta}{#4}%

1947 \advance\@tempcnta#3

1948 \expandafter\bbl@tempa

1949 \fi}%

1950 \bbl@tempa}

The following package options control the behavior of hyphenation mapping.

1951 〈〈∗More package options〉〉 ≡
1952 \DeclareOption{hyphenmap=off}{\chardef\bbl@opt@hyphenmap\z@}

1953 \DeclareOption{hyphenmap=first}{\chardef\bbl@opt@hyphenmap\@ne}

1954 \DeclareOption{hyphenmap=select}{\chardef\bbl@opt@hyphenmap\tw@}

1955 \DeclareOption{hyphenmap=other}{\chardef\bbl@opt@hyphenmap\thr@@}

1956 \DeclareOption{hyphenmap=other*}{\chardef\bbl@opt@hyphenmap4\relax}

1957 〈〈/More package options〉〉

Initial setup to provide a default behavior if hyphenmap is not set.

1958 \AtEndOfPackage{%

1959 \ifx\bbl@opt@hyphenmap\@undefined

1960 \bbl@xin@{,}{\bbl@language@opts}%

1961 \chardef\bbl@opt@hyphenmap\ifin@4\else\@ne\fi

1962 \fi}

4.14. Tailor captions

A general tool for resetting the caption names with a unique interface. With the old way, which mixes

the switcher and the string, we convert it to the new one, which separates these two steps.

1963 \newcommand\setlocalecaption{%

1964 \@ifstar\bbl@setcaption@s\bbl@setcaption@x}

1965 \def\bbl@setcaption@x#1#2#3{% language caption-name string

1966 \bbl@trim@def\bbl@tempa{#2}%

1967 \bbl@xin@{.template}{\bbl@tempa}%

1968 \ifin@

1969 \bbl@ini@captions@template{#3}{#1}%

1970 \else

1971 \edef\bbl@tempd{%

1972 \expandafter\expandafter\expandafter

1973 \strip@prefix\expandafter\meaning\csname captions#1\endcsname}%

1974 \bbl@xin@

1975 {\expandafter\string\csname #2name\endcsname}%

1976 {\bbl@tempd}%

1977 \ifin@ % Renew caption

1978 \bbl@xin@{\string\bbl@scset}{\bbl@tempd}%

1979 \ifin@

1980 \bbl@exp{%

1981 \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%

1982 {\\\bbl@scset\<#2name>\<#1#2name>}%

1983 {}}%

1984 \else % Old way converts to new way

1985 \bbl@ifunset{#1#2name}%

1986 {\bbl@exp{%

1987 \\\bbl@add\<captions#1>{\def\<#2name>{\<#1#2name>}}%

1988 \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%

1989 {\def\<#2name>{\<#1#2name>}}%

1990 {}}}%

1991 {}%

48

1992 \fi

1993 \else

1994 \bbl@xin@{\string\bbl@scset}{\bbl@tempd}% New

1995 \ifin@ % New way

1996 \bbl@exp{%

1997 \\\bbl@add\<captions#1>{\\\bbl@scset\<#2name>\<#1#2name>}%

1998 \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%

1999 {\\\bbl@scset\<#2name>\<#1#2name>}%

2000 {}}%

2001 \else % Old way, but defined in the new way

2002 \bbl@exp{%

2003 \\\bbl@add\<captions#1>{\def\<#2name>{\<#1#2name>}}%

2004 \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%

2005 {\def\<#2name>{\<#1#2name>}}%

2006 {}}%

2007 \fi%

2008 \fi

2009 \@namedef{#1#2name}{#3}%

2010 \toks@\expandafter{\bbl@captionslist}%

2011 \bbl@exp{\\\in@{\<#2name>}{\the\toks@}}%

2012 \ifin@\else

2013 \bbl@exp{\\\bbl@add\\\bbl@captionslist{\<#2name>}}%

2014 \bbl@toglobal\bbl@captionslist

2015 \fi

2016 \fi}

4.15. Making glyphs available

This section makes a number of glyphs available that either do not exist in the OT1 encoding and

have to be ‘faked’, or that are not accessible through T1enc.def.

\set@low@box The following macro is used to lower quotes to the same level as the comma. It

prepares its argument in box register 0.

2017 \bbl@trace{Macros related to glyphs}

2018 \def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}%

2019 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@%

2020 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.

2021 \def\save@sf@q#1{\leavevmode

2022 \begingroup

2023 \edef\@SF{\spacefactor\the\spacefactor}#1\@SF

2024 \endgroup}

4.15.1.Quotation marks

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a separate

character, accessible via \quotedblbase. In the OT1 encoding it is not available, therefore we make it

available by lowering the normal open quote character to the baseline.

2025 \ProvideTextCommand{\quotedblbase}{OT1}{%

2026 \save@sf@q{\set@low@box{\textquotedblright\/}%

2027 \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be typeset.

2028 \ProvideTextCommandDefault{\quotedblbase}{%

2029 \UseTextSymbol{OT1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

2030 \ProvideTextCommand{\quotesinglbase}{OT1}{%

2031 \save@sf@q{\set@low@box{\textquoteright\/}%

2032 \box\z@\kern-.04em\bbl@allowhyphens}}

49

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be typeset.

2033 \ProvideTextCommandDefault{\quotesinglbase}{%

2034 \UseTextSymbol{OT1}{\quotesinglbase}}

\guillemetleft

\guillemetright The guillemet characters are not available in OT1 encoding. They are faked. (Wrong

names with o preserved for compatibility.)

2035 \ProvideTextCommand{\guillemetleft}{OT1}{%

2036 \ifmmode

2037 \ll

2038 \else

2039 \save@sf@q{\nobreak

2040 \raise.2ex\hbox{$\scriptscriptstyle\ll$}\bbl@allowhyphens}%

2041 \fi}

2042 \ProvideTextCommand{\guillemetright}{OT1}{%

2043 \ifmmode

2044 \gg

2045 \else

2046 \save@sf@q{\nobreak

2047 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%

2048 \fi}

2049 \ProvideTextCommand{\guillemotleft}{OT1}{%

2050 \ifmmode

2051 \ll

2052 \else

2053 \save@sf@q{\nobreak

2054 \raise.2ex\hbox{$\scriptscriptstyle\ll$}\bbl@allowhyphens}%

2055 \fi}

2056 \ProvideTextCommand{\guillemotright}{OT1}{%

2057 \ifmmode

2058 \gg

2059 \else

2060 \save@sf@q{\nobreak

2061 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%

2062 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

2063 \ProvideTextCommandDefault{\guillemetleft}{%

2064 \UseTextSymbol{OT1}{\guillemetleft}}

2065 \ProvideTextCommandDefault{\guillemetright}{%

2066 \UseTextSymbol{OT1}{\guillemetright}}

2067 \ProvideTextCommandDefault{\guillemotleft}{%

2068 \UseTextSymbol{OT1}{\guillemotleft}}

2069 \ProvideTextCommandDefault{\guillemotright}{%

2070 \UseTextSymbol{OT1}{\guillemotright}}

\guilsinglleft

\guilsinglright The single guillemets are not available in OT1 encoding. They are faked.

2071 \ProvideTextCommand{\guilsinglleft}{OT1}{%

2072 \ifmmode

2073 <%

2074 \else

2075 \save@sf@q{\nobreak

2076 \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens}%

2077 \fi}

2078 \ProvideTextCommand{\guilsinglright}{OT1}{%

2079 \ifmmode

2080 >%

2081 \else

2082 \save@sf@q{\nobreak

2083 \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens}%

2084 \fi}

50

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

2085 \ProvideTextCommandDefault{\guilsinglleft}{%

2086 \UseTextSymbol{OT1}{\guilsinglleft}}

2087 \ProvideTextCommandDefault{\guilsinglright}{%

2088 \UseTextSymbol{OT1}{\guilsinglright}}

4.15.2.Letters

\ij

\IJ The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not in the OT1

encoded fonts. Therefore we fake it for the OT1 encoding.

2089 \DeclareTextCommand{\ij}{OT1}{%

2090 i\kern-0.02em\bbl@allowhyphens j}

2091 \DeclareTextCommand{\IJ}{OT1}{%

2092 I\kern-0.02em\bbl@allowhyphens J}

2093 \DeclareTextCommand{\ij}{T1}{\char188}

2094 \DeclareTextCommand{\IJ}{T1}{\char156}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

2095 \ProvideTextCommandDefault{\ij}{%

2096 \UseTextSymbol{OT1}{\ij}}

2097 \ProvideTextCommandDefault{\IJ}{%

2098 \UseTextSymbol{OT1}{\IJ}}

\dj

\DJ The croatian language needs the letters \dj and \DJ; they are available in the T1 encoding, but not

in the OT1 encoding by default.

Some code to construct these glyphs for the OT1 encoding was made available to me by Stipčević

Mario, (stipcevic@olimp.irb.hr).

2099 \def\crrtic@{\hrule height0.1ex width0.3em}

2100 \def\crttic@{\hrule height0.1ex width0.33em}

2101 \def\ddj@{%

2102 \setbox0\hbox{d}\dimen@=\ht0

2103 \advance\dimen@1ex

2104 \dimen@.45\dimen@

2105 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

2106 \advance\dimen@ii.5ex

2107 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}

2108 \def\DDJ@{%

2109 \setbox0\hbox{D}\dimen@=.55\ht0

2110 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

2111 \advance\dimen@ii.15ex % correction for the dash position

2112 \advance\dimen@ii-.15\fontdimen7\font % correction for cmtt font

2113 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen@

2114 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}

2115 %

2116 \DeclareTextCommand{\dj}{OT1}{\ddj@ d}

2117 \DeclareTextCommand{\DJ}{OT1}{\DDJ@ D}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

2118 \ProvideTextCommandDefault{\dj}{%

2119 \UseTextSymbol{OT1}{\dj}}

2120 \ProvideTextCommandDefault{\DJ}{%

2121 \UseTextSymbol{OT1}{\DJ}}

\SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but for other

encodings it is not available. Therefore we make it available here.

2122 \DeclareTextCommand{\SS}{OT1}{SS}

2123 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{OT1}{\SS}}

51

4.15.3.Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make them usable both

outside and inside mathmode. They are defined with \ProvideTextCommandDefault, but this is very

likely not required because their definitions are based on encoding-dependent macros.

\glq

\grq The ‘german’ single quotes.

2124 \ProvideTextCommandDefault{\glq}{%

2125 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}

The definition of \grq depends on the fontencoding. With T1 encoding no extra kerning is needed.

2126 \ProvideTextCommand{\grq}{T1}{%

2127 \textormath{\kern\z@\textquoteleft}{\mbox{\textquoteleft}}}

2128 \ProvideTextCommand{\grq}{TU}{%

2129 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}

2130 \ProvideTextCommand{\grq}{OT1}{%

2131 \save@sf@q{\kern-.0125em

2132 \textormath{\textquoteleft}{\mbox{\textquoteleft}}%

2133 \kern.07em\relax}}

2134 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{OT1}\grq}

\glqq

\grqq The ‘german’ double quotes.

2135 \ProvideTextCommandDefault{\glqq}{%

2136 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra kerning is needed.

2137 \ProvideTextCommand{\grqq}{T1}{%

2138 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}

2139 \ProvideTextCommand{\grqq}{TU}{%

2140 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}

2141 \ProvideTextCommand{\grqq}{OT1}{%

2142 \save@sf@q{\kern-.07em

2143 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}%

2144 \kern.07em\relax}}

2145 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{OT1}\grqq}

\flq

\frq The ‘french’ single guillemets.

2146 \ProvideTextCommandDefault{\flq}{%

2147 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}

2148 \ProvideTextCommandDefault{\frq}{%

2149 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}

\flqq

\frqq The ‘french’ double guillemets.

2150 \ProvideTextCommandDefault{\flqq}{%

2151 \textormath{\guillemetleft}{\mbox{\guillemetleft}}}

2152 \ProvideTextCommandDefault{\frqq}{%

2153 \textormath{\guillemetright}{\mbox{\guillemetright}}}

4.15.4.Umlauts and tremas

The command \" needs to have a different effect for different languages. For German for instance,

the ‘umlaut’ should be positioned lower than the default position for placing it over the letters a, o, u,

A, O and U. When placed over an e, i, E or I it can retain its normal position. For Dutch the same glyph

is always placed in the lower position.

\umlauthigh

52

\umlautlow To be able to provide both positions of \" we provide two commands to switch the

positioning, the default will be \umlauthigh (the normal positioning).

2154 \def\umlauthigh{%

2155 \def\bbl@umlauta##1{\leavevmode\bgroup%

2156 \accent\csname\f@encoding dqpos\endcsname

2157 ##1\bbl@allowhyphens\egroup}%

2158 \let\bbl@umlaute\bbl@umlauta}

2159 \def\umlautlow{%

2160 \def\bbl@umlauta{\protect\lower@umlaut}}

2161 \def\umlautelow{%

2162 \def\bbl@umlaute{\protect\lower@umlaut}}

2163 \umlauthigh

\lower@umlaut Used to position the \" closer to the letter. We want the umlaut character lowered,

nearer to the letter. To do this we need an extra 〈dimen〉 register.

2164 \expandafter\ifx\csname U@D\endcsname\relax

2165 \csname newdimen\endcsname\U@D

2166 \fi

The following code fools TEX’s make_accent procedure about the current x-height of the font to

force another placement of the umlaut character. First we have to save the current x-height of the

font, because we’ll change this font dimension and this is always done globally.

Then we compute the new x-height in such a way that the umlaut character is lowered to the base

character. The value of .45ex depends on the METAFONT parameters with which the fonts were

built. (Just try out, which value will look best.) If the new x-height is too low, it is not changed. Finally

we call the \accent primitive, reset the old x-height and insert the base character in the argument.

2167 \def\lower@umlaut#1{%

2168 \leavevmode\bgroup

2169 \U@D 1ex%

2170 {\setbox\z@\hbox{%

2171 \char\csname\f@encoding dqpos\endcsname}%

2172 \dimen@ -.45ex\advance\dimen@\ht\z@

2173 \ifdim 1ex<\dimen@ \fontdimen5\font\dimen@ \fi}%

2174 \accent\csname\f@encoding dqpos\endcsname

2175 \fontdimen5\font\U@D #1%

2176 \egroup}

For all vowels we declare \" to be a composite command which uses \bbl@umlauta or

\bbl@umlaute to position the umlaut character. We need to be sure that these definitions override

the ones that are provided when the package fontenc with option OT1 is used. Therefore these

declarations are postponed until the beginning of the document. Note these definitions only apply to

some languages, but babel sets them for all languages – you may want to redefine \bbl@umlauta

and/or \bbl@umlaute for a language in the corresponding ldf (using the babel switching

mechanism, of course).

2177 \AtBeginDocument{%

2178 \DeclareTextCompositeCommand{\"}{OT1}{a}{\bbl@umlauta{a}}%

2179 \DeclareTextCompositeCommand{\"}{OT1}{e}{\bbl@umlaute{e}}%

2180 \DeclareTextCompositeCommand{\"}{OT1}{i}{\bbl@umlaute{\i}}%

2181 \DeclareTextCompositeCommand{\"}{OT1}{\i}{\bbl@umlaute{\i}}%

2182 \DeclareTextCompositeCommand{\"}{OT1}{o}{\bbl@umlauta{o}}%

2183 \DeclareTextCompositeCommand{\"}{OT1}{u}{\bbl@umlauta{u}}%

2184 \DeclareTextCompositeCommand{\"}{OT1}{A}{\bbl@umlauta{A}}%

2185 \DeclareTextCompositeCommand{\"}{OT1}{E}{\bbl@umlaute{E}}%

2186 \DeclareTextCompositeCommand{\"}{OT1}{I}{\bbl@umlaute{I}}%

2187 \DeclareTextCompositeCommand{\"}{OT1}{O}{\bbl@umlauta{O}}%

2188 \DeclareTextCompositeCommand{\"}{OT1}{U}{\bbl@umlauta{U}}}

Finally, make sure the default hyphenrules are defined (even if empty). For internal use, another

empty \language is defined. Currently used in Amharic.

2189 \ifx\l@english\@undefined

2190 \chardef\l@english\z@

2191 \fi

53

2192 % The following is used to cancel rules in ini files (see Amharic).

2193 \ifx\l@unhyphenated\@undefined

2194 \newlanguage\l@unhyphenated

2195 \fi

4.16. Layout

Layout is mainly intended to set bidi documents, but there is at least a tool useful in general.

2196 \bbl@trace{Bidi layout}

2197 \providecommand\IfBabelLayout[3]{#3}%

4.17. Load engine specific macros

Some macros are not defined in all engines, so, after loading the files define them if necessary to

raise an error.

2198 \bbl@trace{Input engine specific macros}

2199 \ifcase\bbl@engine

2200 \input txtbabel.def

2201 \or

2202 \input luababel.def

2203 \or

2204 \input xebabel.def

2205 \fi

2206 \providecommand\babelfont{\bbl@error{only-lua-xe}{}{}{}}

2207 \providecommand\babelprehyphenation{\bbl@error{only-lua}{}{}{}}

2208 \ifx\babelposthyphenation\@undefined

2209 \let\babelposthyphenation\babelprehyphenation

2210 \let\babelpatterns\babelprehyphenation

2211 \let\babelcharproperty\babelprehyphenation

2212 \fi

2213 〈/package | core〉

4.18. Creating and modifying languages

Continue with LATEX only.

\babelprovide is a general purpose tool for creating and modifying languages. It creates the

language infrastructure, and loads, if requested, an ini file. It may be used in conjunction to

previously loaded ldf files.

2214 〈∗package〉
2215 \bbl@trace{Creating languages and reading ini files}

2216 \let\bbl@extend@ini\@gobble

2217 \newcommand\babelprovide[2][]{%

2218 \let\bbl@savelangname\languagename

2219 \edef\bbl@savelocaleid{\the\localeid}%

2220 % Set name and locale id

2221 \edef\languagename{#2}%

2222 \bbl@id@assign

2223 % Initialize keys

2224 \bbl@vforeach{captions,date,import,main,script,language,%

2225 hyphenrules,linebreaking,justification,mapfont,maparabic,%

2226 mapdigits,intraspace,intrapenalty,onchar,transforms,alph,%

2227 Alph,labels,labels*,mapdot,calendar,date,casing,interchar,%

2228 @import}%

2229 {\bbl@csarg\let{KVP@##1}\@nnil}%

2230 \global\let\bbl@release@transforms\@empty

2231 \global\let\bbl@release@casing\@empty

2232 \let\bbl@calendars\@empty

2233 \global\let\bbl@inidata\@empty

2234 \global\let\bbl@extend@ini\@gobble

2235 \global\let\bbl@included@inis\@empty

2236 \gdef\bbl@key@list{;}%

2237 \bbl@ifunset{bbl@passto@#2}%

54

2238 {\def\bbl@tempa{#1}}%

2239 {\bbl@exp{\def\\\bbl@tempa{\[bbl@passto@#2],\unexpanded{#1}}}}%

2240 \expandafter\bbl@forkv\expandafter{\bbl@tempa}{%

2241 \in@{/}{##1}% With /, (re)sets a value in the ini

2242 \ifin@

2243 \bbl@renewinikey##1\@@{##2}%

2244 \else

2245 \bbl@csarg\ifx{KVP@##1}\@nnil\else

2246 \bbl@error{unknown-provide-key}{##1}{}{}%

2247 \fi

2248 \bbl@csarg\def{KVP@##1}{##2}%

2249 \fi}%

2250 \chardef\bbl@howloaded=% 0:none; 1:ldf without ini; 2:ini

2251 \bbl@ifunset{date#2}\z@{\bbl@ifunset{bbl@llevel@#2}\@ne\tw@}%

2252 % == init ==

2253 \ifx\bbl@screset\@undefined

2254 \bbl@ldfinit

2255 \fi

2256 % ==

2257 % If there is no import (last wins), use @import (internal, there

2258 % must be just one). To consider any order (because

2259 % \PassOptionsToLocale).

2260 \ifx\bbl@KVP@import\@nnil

2261 \let\bbl@KVP@import\bbl@KVP@@import

2262 \fi

2263 % == date (as option) ==

2264 % \ifx\bbl@KVP@date\@nnil\else

2265 % \fi

2266 % ==

2267 \let\bbl@lbkflag\relax % \@empty = do setup linebreak, only in 3 cases:

2268 \ifcase\bbl@howloaded

2269 \let\bbl@lbkflag\@empty % new

2270 \else

2271 \ifx\bbl@KVP@hyphenrules\@nnil\else

2272 \let\bbl@lbkflag\@empty

2273 \fi

2274 \ifx\bbl@KVP@import\@nnil\else

2275 \let\bbl@lbkflag\@empty

2276 \fi

2277 \fi

2278 % == import, captions ==

2279 \ifx\bbl@KVP@import\@nnil\else

2280 \bbl@exp{\\\bbl@ifblank{\bbl@KVP@import}}%

2281 {\ifx\bbl@initoload\relax

2282 \begingroup

2283 \def\BabelBeforeIni##1##2{\gdef\bbl@KVP@import{##1}\endinput}%

2284 \bbl@input@texini{#2}%

2285 \endgroup

2286 \else

2287 \xdef\bbl@KVP@import{\bbl@initoload}%

2288 \fi}%

2289 {}%

2290 \let\bbl@KVP@date\@empty

2291 \fi

2292 \let\bbl@KVP@captions@@\bbl@KVP@captions

2293 \ifx\bbl@KVP@captions\@nnil

2294 \let\bbl@KVP@captions\bbl@KVP@import

2295 \fi

2296 % ==

2297 \ifx\bbl@KVP@transforms\@nnil\else

2298 \bbl@replace\bbl@KVP@transforms{ }{,}%

2299 \fi

2300 % ==

55

2301 \ifx\bbl@KVP@mapdot\@nnil\else

2302 \def\bbl@tempa{\@empty}%

2303 \ifx\bbl@KVP@mapdot\bbl@tempa\else

2304 \bbl@exp{\gdef\<bbl@map@@.@@\languagename>{\[bbl@KVP@mapdot]}}%

2305 \fi

2306 \fi

2307 % Load ini

2308 % --------

2309 \ifcase\bbl@howloaded

2310 \bbl@provide@new{#2}%

2311 \else

2312 \bbl@ifblank{#1}%

2313 {}% With \bbl@load@basic below

2314 {\bbl@provide@renew{#2}}%

2315 \fi

2316 % Post tasks

2317 % ----------

2318 % == subsequent calls after the first provide for a locale ==

2319 \ifx\bbl@inidata\@empty\else

2320 \bbl@extend@ini{#2}%

2321 \fi

2322 % == ensure captions ==

2323 \ifx\bbl@KVP@captions\@nnil\else

2324 \bbl@ifunset{bbl@extracaps@#2}%

2325 {\bbl@exp{\\\babelensure[exclude=\\\today]{#2}}}%

2326 {\bbl@exp{\\\babelensure[exclude=\\\today,

2327 include=\[bbl@extracaps@#2]}]{#2}}%

2328 \bbl@ifunset{bbl@ensure@\languagename}%

2329 {\bbl@exp{%

2330 \\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%

2331 \\\foreignlanguage{\languagename}%

2332 {####1}}}}%

2333 {}%

2334 \bbl@exp{%

2335 \\\bbl@toglobal\<bbl@ensure@\languagename>%

2336 \\\bbl@toglobal\<bbl@ensure@\languagename\space>}%

2337 \fi

At this point all parameters are defined if ’import’. Now we execute some code depending on them.

But what about if nothing was imported? We just set the basic parameters, but still loading the whole

ini file.

2338 \bbl@load@basic{#2}%

2339 % == script, language ==

2340 % Override the values from ini or defines them

2341 \ifx\bbl@KVP@script\@nnil\else

2342 \bbl@csarg\edef{sname@#2}{\bbl@KVP@script}%

2343 \fi

2344 \ifx\bbl@KVP@language\@nnil\else

2345 \bbl@csarg\edef{lname@#2}{\bbl@KVP@language}%

2346 \fi

2347 \ifcase\bbl@engine\or

2348 \bbl@ifunset{bbl@chrng@\languagename}{}%

2349 {\directlua{

2350 Babel.set_chranges_b('\bbl@cl{sbcp}', '\bbl@cl{chrng}') }}%

2351 \fi

2352 % == Line breaking: intraspace, intrapenalty ==

2353 % For CJK, East Asian, Southeast Asian, if interspace in ini

2354 \ifx\bbl@KVP@intraspace\@nnil\else % We can override the ini or set

2355 \bbl@csarg\edef{intsp@#2}{\bbl@KVP@intraspace}%

2356 \fi

2357 \bbl@provide@intraspace

2358 % == Line breaking: justification ==

2359 \ifx\bbl@KVP@justification\@nnil\else

56

2360 \let\bbl@KVP@linebreaking\bbl@KVP@justification

2361 \fi

2362 \ifx\bbl@KVP@linebreaking\@nnil\else

2363 \bbl@xin@{,\bbl@KVP@linebreaking,}%

2364 {,elongated,kashida,cjk,padding,unhyphenated,}%

2365 \ifin@

2366 \bbl@csarg\xdef

2367 {lnbrk@\languagename}{\expandafter\@car\bbl@KVP@linebreaking\@nil}%

2368 \fi

2369 \fi

2370 \bbl@xin@{/e}{/\bbl@cl{lnbrk}}%

2371 \ifin@\else\bbl@xin@{/k}{/\bbl@cl{lnbrk}}\fi

2372 \ifin@\bbl@arabicjust\fi

2373 \bbl@xin@{/p}{/\bbl@cl{lnbrk}}%

2374 \ifin@\AtBeginDocument{\@nameuse{bbl@tibetanjust}}\fi

2375 % == Line breaking: hyphenate.other.(locale|script) ==

2376 \ifx\bbl@lbkflag\@empty

2377 \bbl@ifunset{bbl@hyotl@\languagename}{}%

2378 {\bbl@csarg\bbl@replace{hyotl@\languagename}{ }{,}%

2379 \bbl@startcommands*{\languagename}{}%

2380 \bbl@csarg\bbl@foreach{hyotl@\languagename}{%

2381 \ifcase\bbl@engine

2382 \ifnum##1<257

2383 \SetHyphenMap{\BabelLower{##1}{##1}}%

2384 \fi

2385 \else

2386 \SetHyphenMap{\BabelLower{##1}{##1}}%

2387 \fi}%

2388 \bbl@endcommands}%

2389 \bbl@ifunset{bbl@hyots@\languagename}{}%

2390 {\bbl@csarg\bbl@replace{hyots@\languagename}{ }{,}%

2391 \bbl@csarg\bbl@foreach{hyots@\languagename}{%

2392 \ifcase\bbl@engine

2393 \ifnum##1<257

2394 \global\lccode##1=##1\relax

2395 \fi

2396 \else

2397 \global\lccode##1=##1\relax

2398 \fi}}%

2399 \fi

2400 % == Counters: maparabic ==

2401 % Native digits, if provided in ini (TeX level, xe and lua)

2402 \ifcase\bbl@engine\else

2403 \bbl@ifunset{bbl@dgnat@\languagename}{}%

2404 {\expandafter\ifx\csname bbl@dgnat@\languagename\endcsname\@empty\else

2405 \expandafter\expandafter\expandafter

2406 \bbl@setdigits\csname bbl@dgnat@\languagename\endcsname

2407 \ifx\bbl@KVP@maparabic\@nnil\else

2408 \ifx\bbl@latinarabic\@undefined

2409 \expandafter\let\expandafter\@arabic

2410 \csname bbl@counter@\languagename\endcsname

2411 \else % i.e., if layout=counters, which redefines \@arabic

2412 \expandafter\let\expandafter\bbl@latinarabic

2413 \csname bbl@counter@\languagename\endcsname

2414 \fi

2415 \fi

2416 \fi}%

2417 \fi

2418 % == Counters: mapdigits ==

2419 % > luababel.def

2420 % == Counters: alph, Alph ==

2421 \ifx\bbl@KVP@alph\@nnil\else

2422 \bbl@exp{%

57

2423 \\\bbl@add\<bbl@preextras@\languagename>{%

2424 \\\babel@save\\\@alph

2425 \let\\\@alph\<bbl@cntr@\bbl@KVP@alph @\languagename>}}%

2426 \fi

2427 \ifx\bbl@KVP@Alph\@nnil\else

2428 \bbl@exp{%

2429 \\\bbl@add\<bbl@preextras@\languagename>{%

2430 \\\babel@save\\\@Alph

2431 \let\\\@Alph\<bbl@cntr@\bbl@KVP@Alph @\languagename>}}%

2432 \fi

2433 % == Counters: mapdot ==

2434 \ifx\bbl@KVP@mapdot\@nnil\else

2435 \bbl@foreach\bbl@list@the{%

2436 \bbl@ifunset{the##1}{}%

2437 {{\bbl@ncarg\let\bbl@tempd{the##1}%

2438 \bbl@carg\bbl@sreplace{the##1}{.}{\bbl@map@lbl{.}}%

2439 \expandafter\ifx\csname the##1\endcsname\bbl@tempd\else

2440 \bbl@exp{\gdef\<the##1>{{\[the##1]}}}%

2441 \fi}}}%

2442 \edef\bbl@tempb{enumi,enumii,enumiii,enumiv}%

2443 \bbl@foreach\bbl@tempb{%

2444 \bbl@ifunset{label##1}{}%

2445 {{\bbl@ncarg\let\bbl@tempd{label##1}%

2446 \bbl@carg\bbl@sreplace{label##1}{.}{\bbl@map@lbl{.}}%

2447 \expandafter\ifx\csname label##1\endcsname\bbl@tempd\else

2448 \bbl@exp{\gdef\<label##1>{{\[label##1]}}}%

2449 \fi}}}%

2450 \fi

2451 % == Casing ==

2452 \bbl@release@casing

2453 \ifx\bbl@KVP@casing\@nnil\else

2454 \bbl@csarg\xdef{casing@\languagename}%

2455 {\@nameuse{bbl@casing@\languagename}\bbl@maybextx\bbl@KVP@casing}%

2456 \fi

2457 % == Calendars ==

2458 \ifx\bbl@KVP@calendar\@nnil

2459 \edef\bbl@KVP@calendar{\bbl@cl{calpr}}%

2460 \fi

2461 \def\bbl@tempe##1 ##2\@@{% Get first calendar

2462 \def\bbl@tempa{##1}}%

2463 \bbl@exp{\\\bbl@tempe\bbl@KVP@calendar\space\\\@@}%

2464 \def\bbl@tempe##1.##2.##3\@@{%

2465 \def\bbl@tempc{##1}%

2466 \def\bbl@tempb{##2}}%

2467 \expandafter\bbl@tempe\bbl@tempa..\@@

2468 \bbl@csarg\edef{calpr@\languagename}{%

2469 \ifx\bbl@tempc\@empty\else

2470 calendar=\bbl@tempc

2471 \fi

2472 \ifx\bbl@tempb\@empty\else

2473 ,variant=\bbl@tempb

2474 \fi}%

2475 % == engine specific extensions ==

2476 % Defined in XXXbabel.def

2477 \bbl@provide@extra{#2}%

2478 % == require.babel in ini ==

2479 % To load or reaload the babel-*.tex, if require.babel in ini

2480 \ifx\bbl@beforestart\relax\else % But not in doc aux or body

2481 \bbl@ifunset{bbl@rqtex@\languagename}{}%

2482 {\expandafter\ifx\csname bbl@rqtex@\languagename\endcsname\@empty\else

2483 \let\BabelBeforeIni\@gobbletwo

2484 \chardef\atcatcode=\catcode`\@

2485 \catcode`\@=11\relax

58

2486 \def\CurrentOption{#2}%

2487 \bbl@input@texini{\bbl@cs{rqtex@\languagename}}%

2488 \catcode`\@=\atcatcode

2489 \let\atcatcode\relax

2490 \global\bbl@csarg\let{rqtex@\languagename}\relax

2491 \fi}%

2492 \bbl@foreach\bbl@calendars{%

2493 \bbl@ifunset{bbl@ca@##1}{%

2494 \chardef\atcatcode=\catcode`\@

2495 \catcode`\@=11\relax

2496 \InputIfFileExists{babel-ca-##1.tex}{}{}%

2497 \catcode`\@=\atcatcode

2498 \let\atcatcode\relax}%

2499 {}}%

2500 \fi

2501 % == frenchspacing ==

2502 \ifcase\bbl@howloaded\in@true\else\in@false\fi

2503 \ifin@\else\bbl@xin@{typography/frenchspacing}{\bbl@key@list}\fi

2504 \ifin@

2505 \bbl@extras@wrap{\\\bbl@pre@fs}%

2506 {\bbl@pre@fs}%

2507 {\bbl@post@fs}%

2508 \fi

2509 % == transforms ==

2510 % > luababel.def

2511 \def\CurrentOption{#2}%

2512 \@nameuse{bbl@icsave@#2}%

2513 % == main ==

2514 \ifx\bbl@KVP@main\@nnil % Restore only if not 'main'

2515 \let\languagename\bbl@savelangname

2516 \chardef\localeid\bbl@savelocaleid\relax

2517 \fi

2518 % == hyphenrules (apply if current) ==

2519 \ifx\bbl@KVP@hyphenrules\@nnil\else

2520 \ifnum\bbl@savelocaleid=\localeid

2521 \language\@nameuse{l@\languagename}%

2522 \fi

2523 \fi}

Depending on whether or not the language exists (based on \date〈language〉), we define two

macros. Remember \bbl@startcommands opens a group.

2524 \def\bbl@provide@new#1{%

2525 \@namedef{date#1}{}% marks lang exists - required by \StartBabelCommands

2526 \@namedef{extras#1}{}%

2527 \@namedef{noextras#1}{}%

2528 \bbl@startcommands*{#1}{captions}%

2529 \ifx\bbl@KVP@captions\@nnil % and also if import, implicit

2530 \def\bbl@tempb##1{% elt for \bbl@captionslist

2531 \ifx##1\@nnil\else

2532 \bbl@exp{%

2533 \\\SetString\\##1{%

2534 \\\bbl@nocaption{\bbl@stripslash##1}{#1\bbl@stripslash##1}}}%

2535 \expandafter\bbl@tempb

2536 \fi}%

2537 \expandafter\bbl@tempb\bbl@captionslist\@nnil

2538 \else

2539 \ifx\bbl@initoload\relax

2540 \bbl@read@ini{\bbl@KVP@captions}2% % Here letters cat = 11

2541 \else

2542 \bbl@read@ini{\bbl@initoload}2% % Same

2543 \fi

2544 \fi

2545 \StartBabelCommands*{#1}{date}%

59

2546 \ifx\bbl@KVP@date\@nnil

2547 \bbl@exp{%

2548 \\\SetString\\\today{\\\bbl@nocaption{today}{#1today}}}%

2549 \else

2550 \bbl@savetoday

2551 \bbl@savedate

2552 \fi

2553 \bbl@endcommands

2554 \bbl@load@basic{#1}%

2555 % == hyphenmins == (only if new)

2556 \bbl@exp{%

2557 \gdef\<#1hyphenmins>{%

2558 {\bbl@ifunset{bbl@lfthm@#1}{2}{\bbl@cs{lfthm@#1}}}%

2559 {\bbl@ifunset{bbl@rgthm@#1}{3}{\bbl@cs{rgthm@#1}}}}}%

2560 % == hyphenrules (also in renew) ==

2561 \bbl@provide@hyphens{#1}%

2562 % == main ==

2563 \ifx\bbl@KVP@main\@nnil\else

2564 \expandafter\main@language\expandafter{#1}%

2565 \fi}

2566 %

2567 \def\bbl@provide@renew#1{%

2568 \ifx\bbl@KVP@captions\@nnil\else

2569 \StartBabelCommands*{#1}{captions}%

2570 \bbl@read@ini{\bbl@KVP@captions}2% % Here all letters cat = 11

2571 \EndBabelCommands

2572 \fi

2573 \ifx\bbl@KVP@date\@nnil\else

2574 \StartBabelCommands*{#1}{date}%

2575 \bbl@savetoday

2576 \bbl@savedate

2577 \EndBabelCommands

2578 \fi

2579 % == hyphenrules (also in new) ==

2580 \ifx\bbl@lbkflag\@empty

2581 \bbl@provide@hyphens{#1}%

2582 \fi

2583 % == main ==

2584 \ifx\bbl@KVP@main\@nnil\else

2585 \expandafter\main@language\expandafter{#1}%

2586 \fi}

Load the basic parameters (ids, typography, counters, and a few more), while captions and dates

are left out. But it may happen some data has been loaded before automatically, so we first discard

the saved values.

2587 \def\bbl@load@basic#1{%

2588 \ifcase\bbl@howloaded\or\or

2589 \ifcase\csname bbl@llevel@\languagename\endcsname

2590 \bbl@csarg\let{lname@\languagename}\relax

2591 \fi

2592 \fi

2593 \bbl@ifunset{bbl@lname@#1}%

2594 {\def\BabelBeforeIni##1##2{%

2595 \begingroup

2596 \let\bbl@ini@captions@aux\@gobbletwo

2597 \def\bbl@inidate ####1.####2.####3.####4\relax ####5####6{}%

2598 \bbl@read@ini{##1}1%

2599 \ifx\bbl@initoload\relax\endinput\fi

2600 \endgroup}%

2601 \begingroup % boxed, to avoid extra spaces:

2602 \ifx\bbl@initoload\relax

2603 \bbl@input@texini{#1}%

2604 \else

60

2605 \setbox\z@\hbox{\BabelBeforeIni{\bbl@initoload}{}}%

2606 \fi

2607 \endgroup}%

2608 {}}

The following ini reader ignores everything but the identification section. It is called when a

font is defined (i.e., when the language is first selected) to know which script/language must be

enabled. This means we must make sure a few characters are not active. The ini is not read directly,

but with a proxy tex file named as the language (which means any code in it must be skipped, too).

2609 \def\bbl@load@info#1{%

2610 \def\BabelBeforeIni##1##2{%

2611 \begingroup

2612 \bbl@read@ini{##1}0%

2613 \endinput % babel- .tex may contain onlypreamble's

2614 \endgroup}% boxed, to avoid extra spaces:

2615 {\bbl@input@texini{#1}}}

The hyphenrules option is handled with an auxiliary macro. This macro is called in three cases:

when a language is first declared with \babelprovide, with hyphenrules and with import.

2616 \def\bbl@provide@hyphens#1{%

2617 \@tempcnta\m@ne % a flag

2618 \ifx\bbl@KVP@hyphenrules\@nnil\else

2619 \bbl@replace\bbl@KVP@hyphenrules{ }{,}%

2620 \bbl@foreach\bbl@KVP@hyphenrules{%

2621 \ifnum\@tempcnta=\m@ne % if not yet found

2622 \bbl@ifsamestring{##1}{+}%

2623 {\bbl@carg\addlanguage{l@##1}}%

2624 {}%

2625 \bbl@ifunset{l@##1}% After a possible +

2626 {}%

2627 {\@tempcnta\@nameuse{l@##1}}%

2628 \fi}%

2629 \ifnum\@tempcnta=\m@ne

2630 \bbl@warning{%

2631 Requested 'hyphenrules' for '\languagename' not found:\\%

2632 \bbl@KVP@hyphenrules.\\%

2633 Using the default value. Reported}%

2634 \fi

2635 \fi

2636 \ifnum\@tempcnta=\m@ne % if no opt or no language in opt found

2637 \ifx\bbl@KVP@captions@@\@nnil

2638 \bbl@ifunset{bbl@hyphr@#1}{}% use value in ini, if exists

2639 {\bbl@exp{\\\bbl@ifblank{\bbl@cs{hyphr@#1}}}%

2640 {}%

2641 {\bbl@ifunset{l@\bbl@cl{hyphr}}%

2642 {}% if hyphenrules found:

2643 {\@tempcnta\@nameuse{l@\bbl@cl{hyphr}}}}}%

2644 \fi

2645 \fi

2646 \bbl@ifunset{l@#1}%

2647 {\ifnum\@tempcnta=\m@ne

2648 \bbl@carg\adddialect{l@#1}\language

2649 \else

2650 \bbl@carg\adddialect{l@#1}\@tempcnta

2651 \fi}%

2652 {\ifnum\@tempcnta=\m@ne\else

2653 \global\bbl@carg\chardef{l@#1}\@tempcnta

2654 \fi}}

The reader of babel-...tex files. We reset temporarily some catcodes (and make sure no space is

accidentally inserted).

2655 \def\bbl@input@texini#1{%

2656 \bbl@bsphack

2657 \bbl@exp{%

61

2658 \catcode`\\\%=14 \catcode`\\\\=0

2659 \catcode`\\\{=1 \catcode`\\\}=2

2660 \lowercase{\\\InputIfFileExists{babel-#1.tex}{}{}}%

2661 \catcode`\\\%=\the\catcode`\%\relax

2662 \catcode`\\\\=\the\catcode`\\\relax

2663 \catcode`\\\{=\the\catcode`\{\relax

2664 \catcode`\\\}=\the\catcode`\}\relax}%

2665 \bbl@esphack}

The following macros read and store ini files (but don’t process them). For each line, there are 3

possible actions: ignore if starts with ;, switch section if starts with [, and store otherwise. There are

used in the first step of \bbl@read@ini.

2666 \def\bbl@iniline#1\bbl@iniline{%

2667 \@ifnextchar[\bbl@inisect{\@ifnextchar;\bbl@iniskip\bbl@inistore}#1\@@}%]

2668 \def\bbl@inisect[#1]#2\@@{\def\bbl@section{#1}}

2669 \def\bbl@iniskip#1\@@{}% if starts with ;

2670 \def\bbl@inistore#1=#2\@@{% full (default)

2671 \bbl@trim@def\bbl@tempa{#1}%

2672 \bbl@trim\toks@{#2}%

2673 \bbl@ifsamestring{\bbl@tempa}{@include}%

2674 {\bbl@read@subini{\the\toks@}}%

2675 {\bbl@xin@{;\bbl@section/\bbl@tempa;}{\bbl@key@list}%

2676 \ifin@\else

2677 \bbl@xin@{,identification/include.}%

2678 {,\bbl@section/\bbl@tempa}%

2679 \ifin@\xdef\bbl@included@inis{\the\toks@}\fi

2680 \bbl@exp{%

2681 \\\g@addto@macro\\\bbl@inidata{%

2682 \\\bbl@elt{\bbl@section}{\bbl@tempa}{\the\toks@}}}%

2683 \fi}}

2684 \def\bbl@inistore@min#1=#2\@@{% minimal (maybe set in \bbl@read@ini)

2685 \bbl@trim@def\bbl@tempa{#1}%

2686 \bbl@trim\toks@{#2}%

2687 \bbl@xin@{.identification.}{.\bbl@section.}%

2688 \ifin@

2689 \bbl@exp{\\\g@addto@macro\\\bbl@inidata{%

2690 \\\bbl@elt{identification}{\bbl@tempa}{\the\toks@}}}%

2691 \fi}

4.19. Main loop in ‘provide’

Now, the ‘main loop’, \bbl@read@ini, which **must be executed inside a group**. At this point,

\bbl@inidatamay contain data declared in \babelprovide, with ‘slashed’ keys. There are 3 steps:

first read the ini file and store it; then traverse the stored values, and process some groups if

required (date, captions, labels, counters); finally, ‘export’ some values by defining global macros

(identification, typography, characters, numbers). The second argument is 0 when called to read the

minimal data for fonts; with \babelprovide it’s either 1 (without import) or 2 (which import). The

value−1 is used with \DocumentMetadata.

\bbl@loop@ini is the reader, line by line (1: stream), and calls \bbl@iniline to save the key/value

pairs. If \bbl@inistore finds the @include directive, the input stream is switched temporarily and

\bbl@read@subini is called.

When the language is being set based on the document metadata (#2 in \bbl@read@ini is−1),

there is an interlude to get the name, after the data have been collected, and before it’s processed.

2692 \def\bbl@loop@ini#1{%

2693 \loop

2694 \if T\ifeof#1 F\fi T\relax % Trick, because inside \loop

2695 \endlinechar\m@ne

2696 \read#1 to \bbl@line

2697 \endlinechar`\^^M

2698 \ifx\bbl@line\@empty\else

2699 \expandafter\bbl@iniline\bbl@line\bbl@iniline

2700 \fi

2701 \repeat}

62

2702 %

2703 \def\bbl@read@subini#1{%

2704 \ifx\bbl@readsubstream\@undefined

2705 \csname newread\endcsname\bbl@readsubstream

2706 \fi

2707 \openin\bbl@readsubstream=babel-#1.ini

2708 \ifeof\bbl@readsubstream

2709 \bbl@error{no-ini-file}{#1}{}{}%

2710 \else

2711 {\bbl@loop@ini\bbl@readsubstream}%

2712 \fi

2713 \closein\bbl@readsubstream}

2714 %

2715 \ifx\bbl@readstream\@undefined

2716 \csname newread\endcsname\bbl@readstream

2717 \fi

2718 \def\bbl@read@ini#1#2{%

2719 \global\let\bbl@extend@ini\@gobble

2720 \openin\bbl@readstream=babel-#1.ini

2721 \ifeof\bbl@readstream

2722 \bbl@error{no-ini-file}{#1}{}{}%

2723 \else

2724 % == Store ini data in \bbl@inidata ==

2725 \catcode`\ =10 \catcode`\"=12

2726 \catcode`\[=12 \catcode`\]=12 \catcode`\==12 \catcode`\&=12

2727 \catcode`\;=12 \catcode`\|=12 \catcode`\%=14 \catcode`\-=12

2728 \ifnum#2=\m@ne % Just for the info

2729 \edef\languagename{tag \bbl@metalang}%

2730 \fi

2731 \bbl@info{\ifnum#2=\m@ne Fetching locale name for tag \bbl@metalang

2732 \else Importing

2733 \ifcase#2font and identification \or basic \fi

2734 data for \languagename

2735 \fi\\%

2736 from babel-#1.ini. Reported}%

2737 \ifnum#2<\@ne

2738 \global\let\bbl@inidata\@empty

2739 \let\bbl@inistore\bbl@inistore@min % Remember it's local

2740 \fi

2741 \def\bbl@section{identification}%

2742 \bbl@exp{%

2743 \\\bbl@inistore tag.ini=#1\\\@@

2744 \\\bbl@inistore load.level=\ifnum#2<\@ne 0\else #2\fi\\\@@}%

2745 \bbl@loop@ini\bbl@readstream

2746 % == Process stored data ==

2747 \ifnum#2=\m@ne

2748 \def\bbl@tempa##1 ##2\@@{##1}% Get first name

2749 \def\bbl@elt##1##2##3{%

2750 \bbl@ifsamestring{identification/name.babel}{##1/##2}%

2751 {\edef\languagename{\bbl@tempa##3 \@@}%

2752 \let\localename\languagename

2753 \bbl@id@assign

2754 \def\bbl@elt####1####2####3{}}%

2755 {}}%

2756 \bbl@inidata

2757 \fi

2758 \bbl@csarg\xdef{lini@\languagename}{#1}%

2759 \bbl@read@ini@aux

2760 % == 'Export' data ==

2761 \bbl@ini@exports{#2}%

2762 \global\bbl@csarg\let{inidata@\languagename}\bbl@inidata

2763 \global\let\bbl@inidata\@empty

2764 \bbl@exp{\\\bbl@add@list\\\bbl@ini@loaded{\languagename}}%

63

2765 \bbl@toglobal\bbl@ini@loaded

2766 \fi

2767 \closein\bbl@readstream}

2768 \def\bbl@read@ini@aux{%

2769 \let\bbl@savestrings\@empty

2770 \let\bbl@savetoday\@empty

2771 \let\bbl@savedate\@empty

2772 \def\bbl@elt##1##2##3{%

2773 \def\bbl@section{##1}%

2774 \in@{=date.}{=##1}% Find a better place

2775 \ifin@

2776 \bbl@ifunset{bbl@inikv@##1}%

2777 {\bbl@ini@calendar{##1}}%

2778 {}%

2779 \fi

2780 \bbl@ifunset{bbl@inikv@##1}{}%

2781 {\csname bbl@inikv@##1\endcsname{##2}{##3}}}%

2782 \bbl@inidata}

A variant to be used when the ini file has been already loaded, because it’s not the first

\babelprovide for this language.

2783 \def\bbl@extend@ini@aux#1{%

2784 \bbl@startcommands*{#1}{captions}%

2785 % Activate captions/... and modify exports

2786 \bbl@csarg\def{inikv@captions.licr}##1##2{%

2787 \setlocalecaption{#1}{##1}{##2}}%

2788 \def\bbl@inikv@captions##1##2{%

2789 \bbl@ini@captions@aux{##1}{##2}}%

2790 \def\bbl@stringdef##1##2{\gdef##1{##2}}%

2791 \def\bbl@exportkey##1##2##3{%

2792 \bbl@ifunset{bbl@@kv@##2}{}%

2793 {\expandafter\ifx\csname bbl@@kv@##2\endcsname\@empty\else

2794 \bbl@exp{\global\let\<bbl@##1@\languagename>\<bbl@@kv@##2>}%

2795 \fi}}%

2796 % As with \bbl@read@ini, but with some changes

2797 \bbl@read@ini@aux

2798 \bbl@ini@exports\tw@

2799 % Update inidata@lang by pretending the ini is read.

2800 \def\bbl@elt##1##2##3{%

2801 \def\bbl@section{##1}%

2802 \bbl@iniline##2=##3\bbl@iniline}%

2803 \csname bbl@inidata@#1\endcsname

2804 \global\bbl@csarg\let{inidata@#1}\bbl@inidata

2805 \StartBabelCommands*{#1}{date}% And from the import stuff

2806 \def\bbl@stringdef##1##2{\gdef##1{##2}}%

2807 \bbl@savetoday

2808 \bbl@savedate

2809 \bbl@endcommands}

A somewhat hackish tool to handle calendar sections.

2810 \def\bbl@ini@calendar#1{%

2811 \lowercase{\def\bbl@tempa{=#1=}}%

2812 \bbl@replace\bbl@tempa{=date.gregorian}{}%

2813 \bbl@replace\bbl@tempa{=date.}{}%

2814 \in@{.licr=}{#1=}%

2815 \ifin@

2816 \ifcase\bbl@engine

2817 \bbl@replace\bbl@tempa{.licr=}{}%

2818 \else

2819 \let\bbl@tempa\relax

2820 \fi

2821 \fi

2822 \ifx\bbl@tempa\relax\else

2823 \bbl@replace\bbl@tempa{=}{}%

64

2824 \ifx\bbl@tempa\@empty\else

2825 \xdef\bbl@calendars{\bbl@calendars,\bbl@tempa}%

2826 \fi

2827 \bbl@exp{%

2828 \def\<bbl@inikv@#1>####1####2{%

2829 \\\bbl@inidate####1...\relax{####2}{\bbl@tempa}}}%

2830 \fi}

A key with a slash in \babelprovide replaces the value in the ini file (which is ignored altogether).

The mechanism is simple (but suboptimal): add the data to the ini one (at this point the ini file has

not yet been read), and define a dummy macro. When the ini file is read, just skip the corresponding

key and reset the macro (in \bbl@inistore above).

2831 \def\bbl@renewinikey#1/#2\@@#3{%

2832 \global\let\bbl@extend@ini\bbl@extend@ini@aux

2833 \edef\bbl@tempa{\zap@space #1 \@empty}% section

2834 \edef\bbl@tempb{\zap@space #2 \@empty}% key

2835 \bbl@trim\toks@{#3}% value

2836 \bbl@exp{%

2837 \edef\\\bbl@key@list{\bbl@key@list \bbl@tempa/\bbl@tempb;}%

2838 \\\g@addto@macro\\\bbl@inidata{%

2839 \\\bbl@elt{\bbl@tempa}{\bbl@tempb}{\the\toks@}}}}%

The previous assignments are local, so we need to export them. If the value is empty, we can

provide a default value.

2840 \def\bbl@exportkey#1#2#3{%

2841 \bbl@ifunset{bbl@@kv@#2}%

2842 {\bbl@csarg\gdef{#1@\languagename}{#3}}%

2843 {\expandafter\ifx\csname bbl@@kv@#2\endcsname\@empty

2844 \bbl@csarg\gdef{#1@\languagename}{#3}%

2845 \else

2846 \bbl@exp{\global\let\<bbl@#1@\languagename>\<bbl@@kv@#2>}%

2847 \fi}}

Key-value pairs are treated differently depending on the section in the ini file. The following

macros are the readers for identification and typography. Note \bbl@ini@exports is called

always (via \bbl@inisec), while \bbl@after@inimust be called explicitly after \bbl@read@ini if

necessary.

Although BCP 47 doesn’t treat ‘-x-’ as an extension, the CLDR and many other sources do (as a

private use extension). For consistency with other single-letter subtags or ‘singletons’, here is

considered an extension, too.

The identification section is used internally by babel in the following places [to be completed]: BCP

47 script tag in the Unicode ranges, which is in turn used by onchar; the language system is set with

the names, and then fontspecmaps them to the opentype tags, but if the latter package doesn’t define

them, then babel does it; encodings are used in pdftex to select a font encoding valid (and preloaded)

for a language loaded on the fly.

2848 \def\bbl@iniwarning#1{%

2849 \bbl@ifunset{bbl@@kv@identification.warning#1}{}%

2850 {\bbl@warning{%

2851 From babel-\bbl@cs{lini@\languagename}.ini:\\%

2852 \bbl@cs{@kv@identification.warning#1}\\%

2853 Reported}}}

2854 %

2855 \let\bbl@release@transforms\@empty

2856 \let\bbl@release@casing\@empty

Relevant keys are ‘exported’, i.e., global macros with short names are created with values taken

from the corresponding keys. The number of exported keys depends on the loading level (#1):−1

and 0 only info (the identificacion section), 1 also basic (like linebreaking or character ranges), 2 also

(re)new (with date and captions).

2857 \def\bbl@ini@exports#1{%

2858 % Identification always exported

2859 \bbl@iniwarning{}%

2860 \ifcase\bbl@engine

2861 \bbl@iniwarning{.pdflatex}%

65

2862 \or

2863 \bbl@iniwarning{.lualatex}%

2864 \or

2865 \bbl@iniwarning{.xelatex}%

2866 \fi%

2867 \bbl@exportkey{llevel}{identification.load.level}{}%

2868 \bbl@exportkey{elname}{identification.name.english}{}%

2869 \bbl@exp{\\\bbl@exportkey{lname}{identification.name.opentype}%

2870 {\csname bbl@elname@\languagename\endcsname}}%

2871 \bbl@exportkey{tbcp}{identification.tag.bcp47}{}%

2872 \bbl@exportkey{casing}{identification.tag.bcp47}{}%

2873 \bbl@exportkey{lbcp}{identification.language.tag.bcp47}{}%

2874 \bbl@exportkey{lotf}{identification.tag.opentype}{dflt}%

2875 \bbl@exportkey{esname}{identification.script.name}{}%

2876 \bbl@exp{\\\bbl@exportkey{sname}{identification.script.name.opentype}%

2877 {\csname bbl@esname@\languagename\endcsname}}%

2878 \bbl@exportkey{sbcp}{identification.script.tag.bcp47}{}%

2879 \bbl@exportkey{sotf}{identification.script.tag.opentype}{DFLT}%

2880 \bbl@exportkey{rbcp}{identification.region.tag.bcp47}{}%

2881 \bbl@exportkey{vbcp}{identification.variant.tag.bcp47}{}%

2882 \bbl@exportkey{extt}{identification.extension.t.tag.bcp47}{}%

2883 \bbl@exportkey{extu}{identification.extension.u.tag.bcp47}{}%

2884 \bbl@exportkey{extx}{identification.extension.x.tag.bcp47}{}%

2885 % Also maps bcp47 -> languagename

2886 \bbl@csarg\xdef{bcp@map@\bbl@cl{tbcp}}{\languagename}%

2887 \ifcase\bbl@engine\or

2888 \directlua{%

2889 Babel.locale_props[\the\bbl@cs{id@@\languagename}].script

2890 = '\bbl@cl{sbcp}'}%

2891 \fi

2892 % Conditional

2893 \ifnum#1>\z@ % -1 or 0 = only info, 1 = basic, 2 = (re)new

2894 \bbl@exportkey{calpr}{date.calendar.preferred}{}%

2895 \bbl@exportkey{lnbrk}{typography.linebreaking}{h}%

2896 \bbl@exportkey{hyphr}{typography.hyphenrules}{}%

2897 \bbl@exportkey{lfthm}{typography.lefthyphenmin}{2}%

2898 \bbl@exportkey{rgthm}{typography.righthyphenmin}{3}%

2899 \bbl@exportkey{prehc}{typography.prehyphenchar}{}%

2900 \bbl@exportkey{hyotl}{typography.hyphenate.other.locale}{}%

2901 \bbl@exportkey{hyots}{typography.hyphenate.other.script}{}%

2902 \bbl@exportkey{intsp}{typography.intraspace}{}%

2903 \bbl@exportkey{frspc}{typography.frenchspacing}{u}%

2904 \bbl@exportkey{chrng}{characters.ranges}{}%

2905 \bbl@exportkey{quote}{characters.delimiters.quotes}{}%

2906 \bbl@exportkey{dgnat}{numbers.digits.native}{}%

2907 \ifnum#1=\tw@ % only (re)new

2908 \bbl@exportkey{rqtex}{identification.require.babel}{}%

2909 \bbl@toglobal\bbl@savetoday

2910 \bbl@toglobal\bbl@savedate

2911 \bbl@savestrings

2912 \fi

2913 \fi}

4.20. Processing keys in ini

A shared handler for key=val lines to be stored in \bbl@@kv@〈section〉.〈key〉.

2914 \def\bbl@inikv#1#2{% key=value

2915 \toks@{#2}% This hides #'s from ini values

2916 \bbl@csarg\edef{@kv@\bbl@section.#1}{\the\toks@}}

By default, the following sections are just read. Actions are taken later.

2917 \let\bbl@inikv@identification\bbl@inikv

2918 \let\bbl@inikv@date\bbl@inikv

66

2919 \let\bbl@inikv@typography\bbl@inikv

2920 \let\bbl@inikv@numbers\bbl@inikv

The characters section also stores the values, but casing is treated in a different fashion. Much

like transforms, a set of commands calling the parser are stored in \bbl@release@casing, which is

executed in \babelprovide.

2921 \def\bbl@maybextx{-\bbl@csarg\ifx{extx@\languagename}\@empty x-\fi}

2922 \def\bbl@inikv@characters#1#2{%

2923 \bbl@ifsamestring{#1}{casing}% e.g., casing = uV

2924 {\bbl@exp{%

2925 \\\g@addto@macro\\\bbl@release@casing{%

2926 \\\bbl@casemapping{}{\languagename}{\unexpanded{#2}}}}}%

2927 {\in@{$casing.}{$#1}% e.g., casing.Uv = uV

2928 \ifin@

2929 \lowercase{\def\bbl@tempb{#1}}%

2930 \bbl@replace\bbl@tempb{casing.}{}%

2931 \bbl@exp{\\\g@addto@macro\\\bbl@release@casing{%

2932 \\\bbl@casemapping

2933 {\\\bbl@maybextx\bbl@tempb}{\languagename}{\unexpanded{#2}}}}%

2934 \else

2935 \bbl@inikv{#1}{#2}%

2936 \fi}}

Additive numerals require an additional definition. When .1 is found, two macros are defined –

the basic one, without .1 called by \localenumeral, and another one preserving the trailing .1 for

the ‘units’.

2937 \def\bbl@inikv@counters#1#2{%

2938 \bbl@ifsamestring{#1}{digits}%

2939 {\bbl@error{digits-is-reserved}{}{}{}}%

2940 {}%

2941 \def\bbl@tempc{#1}%

2942 \bbl@trim@def{\bbl@tempb*}{#2}%

2943 \in@{.1$}{#1$}%

2944 \ifin@

2945 \bbl@replace\bbl@tempc{.1}{}%

2946 \bbl@csarg\protected@xdef{cntr@\bbl@tempc @\languagename}{%

2947 \noexpand\bbl@alphnumeral{\bbl@tempc}}%

2948 \fi

2949 \in@{.F.}{#1}%

2950 \ifin@\else\in@{.S.}{#1}\fi

2951 \ifin@

2952 \bbl@csarg\protected@xdef{cntr@#1@\languagename}{\bbl@tempb*}%

2953 \else

2954 \toks@{}% Required by \bbl@buildifcase, which returns \bbl@tempa

2955 \expandafter\bbl@buildifcase\bbl@tempb* \\ % Space after \\

2956 \bbl@csarg{\global\expandafter\let}{cntr@#1@\languagename}\bbl@tempa

2957 \fi}

Now captions and captions.licr, depending on the engine. And below also for dates. They rely

on a few auxiliary macros. It is expected the ini file provides the complete set in Unicode and LICR, in

that order.

2958 \ifcase\bbl@engine

2959 \bbl@csarg\def{inikv@captions.licr}#1#2{%

2960 \bbl@ini@captions@aux{#1}{#2}}

2961 \else

2962 \def\bbl@inikv@captions#1#2{%

2963 \bbl@ini@captions@aux{#1}{#2}}

2964 \fi

The auxiliary macro for captions define \〈caption〉name.

2965 \def\bbl@ini@captions@template#1#2{% string language tempa=capt-name

2966 \bbl@replace\bbl@tempa{.template}{}%

2967 \def\bbl@toreplace{#1{}}%

2968 \bbl@replace\bbl@toreplace{[]}{\nobreakspace{}}%

67

2969 \bbl@replace\bbl@toreplace{[[}{\csname}%

2970 \bbl@replace\bbl@toreplace{[}{\csname the}%

2971 \bbl@replace\bbl@toreplace{]]}{name\endcsname{}}%

2972 \bbl@replace\bbl@toreplace{]}{\endcsname{}}%

2973 \bbl@xin@{,\bbl@tempa,}{,chapter,appendix,part,}%

2974 \ifin@

2975 \@nameuse{bbl@patch\bbl@tempa}%

2976 \global\bbl@csarg\let{\bbl@tempa fmt@#2}\bbl@toreplace

2977 \fi

2978 \bbl@xin@{,\bbl@tempa,}{,figure,table,}%

2979 \ifin@

2980 \global\bbl@csarg\let{\bbl@tempa fmt@#2}\bbl@toreplace

2981 \bbl@exp{\gdef\<fnum@\bbl@tempa>{%

2982 \\\bbl@ifunset{bbl@\bbl@tempa fmt@\\\languagename}%

2983 {\[fnum@\bbl@tempa]}%

2984 {\\\@nameuse{bbl@\bbl@tempa fmt@\\\languagename}}}}%

2985 \fi}

2986 %

2987 \def\bbl@ini@captions@aux#1#2{%

2988 \bbl@trim@def\bbl@tempa{#1}%

2989 \bbl@xin@{.template}{\bbl@tempa}%

2990 \ifin@

2991 \bbl@ini@captions@template{#2}\languagename

2992 \else

2993 \bbl@ifblank{#2}%

2994 {\bbl@exp{%

2995 \toks@{\\\bbl@nocaption{\bbl@tempa name}{\languagename\bbl@tempa name}}}}%

2996 {\bbl@trim\toks@{#2}}%

2997 \bbl@exp{%

2998 \\\bbl@add\\\bbl@savestrings{%

2999 \\\SetString\<\bbl@tempa name>{\the\toks@}}}%

3000 \toks@\expandafter{\bbl@captionslist}%

3001 \bbl@exp{\\\in@{\<\bbl@tempa name>}{\the\toks@}}%

3002 \ifin@\else

3003 \bbl@exp{%

3004 \\\bbl@add\<bbl@extracaps@\languagename>{\<\bbl@tempa name>}%

3005 \\\bbl@toglobal\<bbl@extracaps@\languagename>}%

3006 \fi

3007 \fi}

Labels. Captions must contain just strings, no format at all, so there is new group in ini files.

3008 \def\bbl@list@the{%

3009 part,chapter,section,subsection,subsubsection,paragraph,%

3010 subparagraph,enumi,enumii,enumiii,enumiv,equation,figure,%

3011 table,page,footnote,mpfootnote,mpfn}

3012 %

3013 \def\bbl@map@cnt#1{% #1:roman,etc, // #2:enumi,etc

3014 \bbl@ifunset{bbl@map@#1@\languagename}%

3015 {\@nameuse{#1}}%

3016 {\@nameuse{bbl@map@#1@\languagename}}}

3017 %

3018 \def\bbl@map@lbl#1{% #1:a sign, eg, .

3019 \ifincsname#1\else

3020 \bbl@ifunset{bbl@map@@#1@@\languagename}%

3021 {#1}%

3022 {\@nameuse{bbl@map@@#1@@\languagename}}%

3023 \fi}

3024 %

3025 \def\bbl@inikv@labels#1#2{%

3026 \in@{.map}{#1}%

3027 \ifin@

3028 \in@{,dot.map,}{,#1,}%

3029 \ifin@

68

3030 \global\@namedef{bbl@map@@.@@\languagename}{#2}%

3031 \fi

3032 \ifx\bbl@KVP@labels\@nnil\else

3033 \bbl@xin@{ map }{ \bbl@KVP@labels\space}%

3034 \ifin@

3035 \def\bbl@tempc{#1}%

3036 \bbl@replace\bbl@tempc{.map}{}%

3037 \in@{,#2,}{,arabic,roman,Roman,alph,Alph,fnsymbol,}%

3038 \bbl@exp{%

3039 \gdef\<bbl@map@\bbl@tempc @\languagename>%

3040 {\ifin@\<#2>\else\\\localecounter{#2}\fi}}%

3041 \bbl@foreach\bbl@list@the{%

3042 \bbl@ifunset{the##1}{}%

3043 {\bbl@ncarg\let\bbl@tempd{the##1}%

3044 \bbl@exp{%

3045 \\\bbl@sreplace\<the##1>%

3046 {\<\bbl@tempc>{##1}}%

3047 {\\\bbl@map@cnt{\bbl@tempc}{##1}}%

3048 \\\bbl@sreplace\<the##1>%

3049 {\<\@empty @\bbl@tempc>\<c@##1>}%

3050 {\\\bbl@map@cnt{\bbl@tempc}{##1}}%

3051 \\\bbl@sreplace\<the##1>%

3052 {\\\csname @\bbl@tempc\\\endcsname\<c@##1>}%

3053 {{\\\bbl@map@cnt{\bbl@tempc}{##1}}}}%

3054 \expandafter\ifx\csname the##1\endcsname\bbl@tempd\else

3055 \bbl@exp{\gdef\<the##1>{{\[the##1]}}}%

3056 \fi}}%

3057 \fi

3058 \fi

3059 %

3060 \else

3061 % The following code is still under study. You can test it and make

3062 % suggestions. E.g., enumerate.2 = ([enumi]).([enumii]). It's

3063 % language dependent.

3064 \in@{enumerate.}{#1}%

3065 \ifin@

3066 \def\bbl@tempa{#1}%

3067 \bbl@replace\bbl@tempa{enumerate.}{}%

3068 \def\bbl@toreplace{#2}%

3069 \bbl@replace\bbl@toreplace{[]}{\nobreakspace{}}%

3070 \bbl@replace\bbl@toreplace{[}{\csname the}%

3071 \bbl@replace\bbl@toreplace{]}{\endcsname{}}%

3072 \toks@\expandafter{\bbl@toreplace}%

3073 \bbl@exp{%

3074 \\\bbl@add\<extras\languagename>{%

3075 \\\babel@save\<labelenum\romannumeral\bbl@tempa>%

3076 \def\<labelenum\romannumeral\bbl@tempa>{\the\toks@}}%

3077 \\\bbl@toglobal\<extras\languagename>}%

3078 \fi

3079 \fi}

To show correctly some captions in a few languages, we need to patch some internal macros,

because the order is hardcoded. For example, in Japanese the chapter number is surrounded by two

string, while in Hungarian is placed after. These replacement works in many classes, but not all.

Actually, the following lines are somewhat tentative.

3080 \def\bbl@chaptype{chapter}

3081 \ifx\@makechapterhead\@undefined

3082 \let\bbl@patchchapter\relax

3083 \else\ifx\thechapter\@undefined

3084 \let\bbl@patchchapter\relax

3085 \else\ifx\ps@headings\@undefined

3086 \let\bbl@patchchapter\relax

3087 \else

69

3088 \def\bbl@patchchapter{%

3089 \global\let\bbl@patchchapter\relax

3090 \gdef\bbl@chfmt{%

3091 \bbl@ifunset{bbl@\bbl@chaptype fmt@\languagename}%

3092 {\@chapapp\space\thechapter}%

3093 {\@nameuse{bbl@\bbl@chaptype fmt@\languagename}}}%

3094 \bbl@add\appendix{\def\bbl@chaptype{appendix}}% Not harmful, I hope

3095 \bbl@sreplace\ps@headings{\@chapapp\ \thechapter}{\bbl@chfmt}%

3096 \bbl@sreplace\chaptermark{\@chapapp\ \thechapter}{\bbl@chfmt}%

3097 \bbl@sreplace\@makechapterhead{\@chapapp\space\thechapter}{\bbl@chfmt}%

3098 \bbl@toglobal\appendix

3099 \bbl@toglobal\ps@headings

3100 \bbl@toglobal\chaptermark

3101 \bbl@toglobal\@makechapterhead}

3102 \let\bbl@patchappendix\bbl@patchchapter

3103 \fi\fi\fi

3104 \ifx\@part\@undefined

3105 \let\bbl@patchpart\relax

3106 \else

3107 \def\bbl@patchpart{%

3108 \global\let\bbl@patchpart\relax

3109 \gdef\bbl@partformat{%

3110 \bbl@ifunset{bbl@partfmt@\languagename}%

3111 {\partname\nobreakspace\thepart}%

3112 {\@nameuse{bbl@partfmt@\languagename}}}%

3113 \bbl@sreplace\@part{\partname\nobreakspace\thepart}{\bbl@partformat}%

3114 \bbl@toglobal\@part}

3115 \fi

Date. Arguments (year, month, day) are not protected, on purpose. In \today, arguments are

always gregorian, and therefore always converted with other calendars.

3116 \let\bbl@calendar\@empty

3117 \DeclareRobustCommand\localedate[1][]{\bbl@localedate{#1}}

3118 \def\bbl@localedate#1#2#3#4{%

3119 \begingroup

3120 \edef\bbl@they{#2}%

3121 \edef\bbl@them{#3}%

3122 \edef\bbl@thed{#4}%

3123 \edef\bbl@tempe{%

3124 \bbl@ifunset{bbl@calpr@\languagename}{}{\bbl@cl{calpr}},%

3125 #1}%

3126 \bbl@exp{\lowercase{\edef\\\bbl@tempe{\bbl@tempe}}}%

3127 \bbl@replace\bbl@tempe{ }{}%

3128 \bbl@replace\bbl@tempe{convert}{convert=}%

3129 \let\bbl@ld@calendar\@empty

3130 \let\bbl@ld@variant\@empty

3131 \let\bbl@ld@convert\relax

3132 \def\bbl@tempb##1=##2\@@{\@namedef{bbl@ld@##1}{##2}}%

3133 \bbl@foreach\bbl@tempe{\bbl@tempb##1\@@}%

3134 \bbl@replace\bbl@ld@calendar{gregorian}{}%

3135 \ifx\bbl@ld@calendar\@empty\else

3136 \ifx\bbl@ld@convert\relax\else

3137 \babelcalendar[\bbl@they-\bbl@them-\bbl@thed]%

3138 {\bbl@ld@calendar}\bbl@they\bbl@them\bbl@thed

3139 \fi

3140 \fi

3141 \@nameuse{bbl@precalendar}% Remove, e.g., +, -civil (-ca-islamic)

3142 \edef\bbl@calendar{% Used in \month..., too

3143 \bbl@ld@calendar

3144 \ifx\bbl@ld@variant\@empty\else

3145 .\bbl@ld@variant

3146 \fi}%

3147 \bbl@cased

70

3148 {\@nameuse{bbl@date@\languagename @\bbl@calendar}%

3149 \bbl@they\bbl@them\bbl@thed}%

3150 \endgroup}

3151 %

3152 \def\bbl@printdate#1{%

3153 \@ifnextchar[{\bbl@printdate@i{#1}}{\bbl@printdate@i{#1}[]}}

3154 \def\bbl@printdate@i#1[#2]#3#4#5{%

3155 \bbl@usedategrouptrue

3156 \@nameuse{bbl@ensure@#1}{\localedate[#2]{#3}{#4}{#5}}}

3157 %

3158 % e.g.: 1=months, 2=wide, 3=1, 4=dummy, 5=value, 6=calendar

3159 \def\bbl@inidate#1.#2.#3.#4\relax#5#6{%

3160 \bbl@trim@def\bbl@tempa{#1.#2}%

3161 \bbl@ifsamestring{\bbl@tempa}{months.wide}% to savedate

3162 {\bbl@trim@def\bbl@tempa{#3}%

3163 \bbl@trim\toks@{#5}%

3164 \@temptokena\expandafter{\bbl@savedate}%

3165 \bbl@exp{% Reverse order - in ini last wins

3166 \def\\\bbl@savedate{%

3167 \\\SetString\<month\romannumeral\bbl@tempa#6name>{\the\toks@}%

3168 \the\@temptokena}}}%

3169 {\bbl@ifsamestring{\bbl@tempa}{date.long}% defined now

3170 {\lowercase{\def\bbl@tempb{#6}}%

3171 \bbl@trim@def\bbl@toreplace{#5}%

3172 \bbl@TG@@date

3173 \global\bbl@csarg\let{date@\languagename @\bbl@tempb}\bbl@toreplace

3174 \ifx\bbl@savetoday\@empty

3175 \bbl@exp{%

3176 \\\AfterBabelCommands{%

3177 \gdef\<\languagename date>{\\\protect\<\languagename date >}%

3178 \gdef\<\languagename date >{\\\bbl@printdate{\languagename}}}%

3179 \def\\\bbl@savetoday{%

3180 \\\SetString\\\today{%

3181 \<\languagename date>[convert]%

3182 {\\\the\year}{\\\the\month}{\\\the\day}}}}%

3183 \fi}%

3184 {}}}

Dates will require some macros for the basic formatting. They may be redefined by language, so

“semi-public” names (camel case) are used. Oddly enough, the CLDR places particles like “de”

inconsistently in either in the date or in the month name. Note after \bbl@replace \toks@ contains

the resulting string, which is used by \bbl@replace@finish@iii (this implicit behavior doesn’t seem

a good idea, but it’s efficient).

3185 \let\bbl@calendar\@empty

3186 \newcommand\babelcalendar[2][\the\year-\the\month-\the\day]{%

3187 \@nameuse{bbl@ca@#2}#1\@@}

3188 \newcommand\BabelDateSpace{\nobreakspace}

3189 \newcommand\BabelDateDot{.\@}

3190 \newcommand\BabelDated[1]{{\number#1}}

3191 \newcommand\BabelDatedd[1]{{\ifnum#1<10 0\fi\number#1}}

3192 \newcommand\BabelDateM[1]{{\number#1}}

3193 \newcommand\BabelDateMM[1]{{\ifnum#1<10 0\fi\number#1}}

3194 \newcommand\BabelDateMMMM[1]{{%

3195 \csname month\romannumeral#1\bbl@calendar name\endcsname}}%

3196 \newcommand\BabelDatey[1]{{\number#1}}%

3197 \newcommand\BabelDateyy[1]{{%

3198 \ifnum#1<10 0\number#1 %

3199 \else\ifnum#1<100 \number#1 %

3200 \else\ifnum#1<1000 \expandafter\@gobble\number#1 %

3201 \else\ifnum#1<10000 \expandafter\@gobbletwo\number#1 %

3202 \else

3203 \bbl@error{limit-two-digits}{}{}{}%

3204 \fi\fi\fi\fi}}

71

3205 \newcommand\BabelDateyyyy[1]{{\number#1}}

3206 \newcommand\BabelDateU[1]{{\number#1}}%

3207 \def\bbl@replace@finish@iii#1{%

3208 \bbl@exp{\def\\#1####1####2####3{\the\toks@}}}

3209 \def\bbl@TG@@date{%

3210 \bbl@replace\bbl@toreplace{[]}{\BabelDateSpace{}}%

3211 \bbl@replace\bbl@toreplace{[.]}{\BabelDateDot{}}%

3212 \bbl@replace\bbl@toreplace{[y]}{\BabelDatey{####1}}%

3213 \bbl@replace\bbl@toreplace{[y|}{\bbl@datecntr[####1|}%

3214 \bbl@replace\bbl@toreplace{[yy]}{\BabelDateyy{####1}}%

3215 \bbl@replace\bbl@toreplace{[yyyy]}{\BabelDateyyyy{####1}}%

3216 \bbl@replace\bbl@toreplace{[M]}{\BabelDateM{####2}}%

3217 \bbl@replace\bbl@toreplace{[M|}{\bbl@datecntr[####2|}%

3218 \bbl@replace\bbl@toreplace{[MM]}{\BabelDateMM{####2}}%

3219 \bbl@replace\bbl@toreplace{[MMMM]}{\BabelDateMMMM{####2}}%

3220 \bbl@replace\bbl@toreplace{[d]}{\BabelDated{####3}}%

3221 \bbl@replace\bbl@toreplace{[d|}{\bbl@datecntr[####3|}%

3222 \bbl@replace\bbl@toreplace{[dd]}{\BabelDatedd{####3}}%

3223 \bbl@replace\bbl@toreplace{[U]}{\BabelDateU{####1}}%

3224 \bbl@replace\bbl@toreplace{[U|}{\bbl@datecntr[####1|}%

3225 \bbl@replace@finish@iii\bbl@toreplace}

3226 \def\bbl@datecntr{\expandafter\bbl@xdatecntr\expandafter}

3227 \def\bbl@xdatecntr[#1|#2]{\localenumeral{#2}{#1}}

4.21. French spacing (again)

For the following declarations, see issue #240. \nonfrenchspacing is set by document too early, so it’s

a hack.

3228 \AddToHook{begindocument/before}{%

3229 \let\bbl@normalsf\normalsfcodes

3230 \let\normalsfcodes\relax}

3231 \AtBeginDocument{%

3232 \ifx\bbl@normalsf\@empty

3233 \ifnum\sfcode`\.=\@m

3234 \let\normalsfcodes\frenchspacing

3235 \else

3236 \let\normalsfcodes\nonfrenchspacing

3237 \fi

3238 \else

3239 \let\normalsfcodes\bbl@normalsf

3240 \fi}

Transforms.

Process the transforms read from ini files, converts them to a form close to the user interface (with

\babelprehyphenation and \babelprehyphenation), wrapped with \bbl@transforms@aux

…\relax, and stores them in \bbl@release@transforms. However, since building a list enclosed in

braces isn’t trivial, the replacements are added after a comma, and then \bbl@transforms@aux adds

the braces.

3241 \bbl@csarg\let{inikv@transforms.prehyphenation}\bbl@inikv

3242 \bbl@csarg\let{inikv@transforms.posthyphenation}\bbl@inikv

3243 \def\bbl@transforms@aux#1#2#3#4,#5\relax{%

3244 #1[#2]{#3}{#4}{#5}}

3245 \begingroup

3246 \catcode`\%=12

3247 \catcode`\&=14

3248 \gdef\bbl@transforms#1#2#3{&%

3249 \directlua{

3250 local str = [==[#2]==]

3251 str = str:gsub('%.%d+%.%d+$', '')

3252 token.set_macro('babeltempa', str)

3253 }&%

3254 \def\babeltempc{}&%

3255 \bbl@xin@{,\babeltempa,}{,\bbl@KVP@transforms,}&%

72

3256 \ifin@\else

3257 \bbl@xin@{:\babeltempa,}{,\bbl@KVP@transforms,}&%

3258 \fi

3259 \ifin@

3260 \bbl@foreach\bbl@KVP@transforms{&%

3261 \bbl@xin@{:\babeltempa,}{,##1,}&%

3262 \ifin@ &% font:font:transform syntax

3263 \directlua{

3264 local t = {}

3265 for m in string.gmatch('##1'..':', '(.-):') do

3266 table.insert(t, m)

3267 end

3268 table.remove(t)

3269 token.set_macro('babeltempc', ',fonts=' .. table.concat(t, ' '))

3270 }&%

3271 \fi}&%

3272 \in@{.0$}{#2$}&%

3273 \ifin@

3274 \directlua{&% (\attribute) syntax

3275 local str = string.match([[\bbl@KVP@transforms]],

3276 '%(([^%(]-)%)[^%)]-\babeltempa')

3277 if str == nil then

3278 token.set_macro('babeltempb', '')

3279 else

3280 token.set_macro('babeltempb', ',attribute=' .. str)

3281 end

3282 }&%

3283 \toks@{#3}&%

3284 \bbl@exp{&%

3285 \\\g@addto@macro\\\bbl@release@transforms{&%

3286 \relax &% Closes previous \bbl@transforms@aux

3287 \\\bbl@transforms@aux

3288 \\#1{label=\babeltempa\babeltempb\babeltempc}&%

3289 {\languagename}{\the\toks@}}}&%

3290 \else

3291 \g@addto@macro\bbl@release@transforms{, {#3}}&%

3292 \fi

3293 \fi}

3294 \endgroup

4.22. Handle language system

The language system (i.e., Language and Script) to be used when defining a font or setting the

direction are set with the following macros. It also deals with unhyphenated line breaking in xetex

(e.g., Thai and traditional Sanskrit), which is done with a hack at the font level because this engine

doesn’t support it.

3295 \def\bbl@provide@lsys#1{%

3296 \bbl@ifunset{bbl@lname@#1}%

3297 {\bbl@load@info{#1}}%

3298 {}%

3299 \bbl@csarg\let{lsys@#1}\@empty

3300 \bbl@ifunset{bbl@sname@#1}{\bbl@csarg\gdef{sname@#1}{Default}}{}%

3301 \bbl@ifunset{bbl@sotf@#1}{\bbl@csarg\gdef{sotf@#1}{DFLT}}{}%

3302 \bbl@csarg\bbl@add@list{lsys@#1}{Script=\bbl@cs{sname@#1}}%

3303 \bbl@ifunset{bbl@lname@#1}{}%

3304 {\bbl@csarg\bbl@add@list{lsys@#1}{Language=\bbl@cs{lname@#1}}}%

3305 \ifcase\bbl@engine\or\or

3306 \bbl@ifunset{bbl@prehc@#1}{}%

3307 {\bbl@exp{\\\bbl@ifblank{\bbl@cs{prehc@#1}}}%

3308 {}%

3309 {\ifx\bbl@xenohyph\@undefined

3310 \global\let\bbl@xenohyph\bbl@xenohyph@d

3311 \ifx\AtBeginDocument\@notprerr

73

3312 \expandafter\@secondoftwo % to execute right now

3313 \fi

3314 \AtBeginDocument{%

3315 \bbl@patchfont{\bbl@xenohyph}%

3316 {\expandafter\select@language\expandafter{\languagename}}}%

3317 \fi}}%

3318 \fi

3319 \bbl@csarg\bbl@toglobal{lsys@#1}}

4.23. Numerals

A tool to define the macros for native digits from the list provided in the ini file. Somewhat

convoluted because there are 10 digits, but only 9 arguments in TEX. Non-digits characters are kept.

The first macro is the generic “localized” command.

3320 \def\bbl@setdigits#1#2#3#4#5{%

3321 \bbl@exp{%

3322 \def\<\languagename digits>####1{% i.e., \langdigits

3323 \<bbl@digits@\languagename>####1\\\@nil}%

3324 \let\<bbl@cntr@digits@\languagename>\<\languagename digits>%

3325 \def\<\languagename counter>####1{% i.e., \langcounter

3326 \\\expandafter\<bbl@counter@\languagename>%

3327 \\\csname c@####1\endcsname}%

3328 \def\<bbl@counter@\languagename>####1{% i.e., \bbl@counter@lang

3329 \\\expandafter\<bbl@digits@\languagename>%

3330 \\\number####1\\\@nil}}%

3331 \def\bbl@tempa##1##2##3##4##5{%

3332 \bbl@exp{% Wow, quite a lot of hashes! :-(

3333 \def\<bbl@digits@\languagename>########1{%

3334 \\\ifx########1\\\@nil % i.e., \bbl@digits@lang

3335 \\\else

3336 \\\ifx0########1#1%

3337 \\\else\\\ifx1########1#2%

3338 \\\else\\\ifx2########1#3%

3339 \\\else\\\ifx3########1#4%

3340 \\\else\\\ifx4########1#5%

3341 \\\else\\\ifx5########1##1%

3342 \\\else\\\ifx6########1##2%

3343 \\\else\\\ifx7########1##3%

3344 \\\else\\\ifx8########1##4%

3345 \\\else\\\ifx9########1##5%

3346 \\\else########1%

3347 \\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi

3348 \\\expandafter\<bbl@digits@\languagename>%

3349 \\\fi}}}%

3350 \bbl@tempa}

Alphabetic counters must be converted from a space separated list to an \ifcase structure.

3351 \def\bbl@buildifcase#1 {% Returns \bbl@tempa, requires \toks@={}

3352 \ifx\\#1% % \\ before, in case #1 is multiletter

3353 \bbl@exp{%

3354 \def\\\bbl@tempa####1{%

3355 \<ifcase>####1\space\the\toks@\<else>\\\@ctrerr\<fi>}}%

3356 \else

3357 \toks@\expandafter{\the\toks@\or #1}%

3358 \expandafter\bbl@buildifcase

3359 \fi}

The code for additive counters is somewhat tricky and it’s based on the fact the arguments just

before \@@ collects digits which have been left ‘unused’ in previous arguments, the first of them

being the number of digits in the number to be converted. This explains the reverse set 76543210.

Digits above 10000 are not handled yet. When the key contains the subkey .F., the number after is

treated as an special case, for a fixed form (see babel-he.ini, for example).

3360 \newcommand\localenumeral[2]{%

74

3361 \bbl@ifunset{bbl@cntr@#1@\languagename}%

3362 {#2}%

3363 {\bbl@cs{cntr@#1@\languagename}{#2}}}

3364 \def\bbl@localecntr#1#2{\localenumeral{#2}{#1}}

3365 \newcommand\localecounter[2]{%

3366 \expandafter\bbl@localecntr

3367 \expandafter{\number\csname c@#2\endcsname}{#1}}

3368 \def\bbl@alphnumeral#1#2{%

3369 \expandafter\bbl@alphnumeral@i\number#2 76543210\@@{#1}}

3370 \def\bbl@alphnumeral@i#1#2#3#4#5#6#7#8\@@#9{%

3371 \ifcase\@car#8\@nil\or % Currently <10000, but prepared for bigger

3372 \bbl@alphnumeral@ii{#9}000000#1\or

3373 \bbl@alphnumeral@ii{#9}00000#1#2\or

3374 \bbl@alphnumeral@ii{#9}0000#1#2#3\or

3375 \bbl@alphnumeral@ii{#9}000#1#2#3#4\else

3376 \bbl@alphnum@invalid{>9999}%

3377 \fi}

3378 \def\bbl@alphnumeral@ii#1#2#3#4#5#6#7#8{%

3379 \bbl@ifunset{bbl@cntr@#1.F.\number#5#6#7#8@\languagename}%

3380 {\bbl@cs{cntr@#1.4@\languagename}#5%

3381 \bbl@cs{cntr@#1.3@\languagename}#6%

3382 \bbl@cs{cntr@#1.2@\languagename}#7%

3383 \bbl@cs{cntr@#1.1@\languagename}#8%

3384 \ifnum#6#7#8>\z@

3385 \bbl@ifunset{bbl@cntr@#1.S.321@\languagename}{}%

3386 {\bbl@cs{cntr@#1.S.321@\languagename}}%

3387 \fi}%

3388 {\bbl@cs{cntr@#1.F.\number#5#6#7#8@\languagename}}}

3389 \def\bbl@alphnum@invalid#1{%

3390 \bbl@error{alphabetic-too-large}{#1}{}{}}

4.24. Casing

3391 \newcommand\BabelUppercaseMapping[3]{%

3392 \DeclareUppercaseMapping[\@nameuse{bbl@casing@#1}]{#2}{#3}}

3393 \newcommand\BabelTitlecaseMapping[3]{%

3394 \DeclareTitlecaseMapping[\@nameuse{bbl@casing@#1}]{#2}{#3}}

3395 \newcommand\BabelLowercaseMapping[3]{%

3396 \DeclareLowercaseMapping[\@nameuse{bbl@casing@#1}]{#2}{#3}}

The parser for casing and casing.〈variant〉.
3397 \ifcase\bbl@engine % Converts utf8 to its code (expandable)

3398 \def\bbl@utftocode#1{\the\numexpr\decode@UTFviii#1\relax}

3399 \else

3400 \def\bbl@utftocode#1{\expandafter`\string#1}

3401 \fi

3402 \def\bbl@casemapping#1#2#3{% 1:variant

3403 \def\bbl@tempa##1 ##2{% Loop

3404 \bbl@casemapping@i{##1}%

3405 \ifx\@empty##2\else\bbl@afterfi\bbl@tempa##2\fi}%

3406 \edef\bbl@templ{\@nameuse{bbl@casing@#2}#1}% Language code

3407 \def\bbl@tempe{0}% Mode (upper/lower...)

3408 \def\bbl@tempc{#3 }% Casing list

3409 \expandafter\bbl@tempa\bbl@tempc\@empty}

3410 \def\bbl@casemapping@i#1{%

3411 \def\bbl@tempb{#1}%

3412 \ifcase\bbl@engine % Handle utf8 in pdftex, by surrounding chars with {}

3413 \@nameuse{regex_replace_all:nnN}%

3414 {[\x{c0}-\x{ff}][\x{80}-\x{bf}]*}{{\0}}\bbl@tempb

3415 \else

3416 \@nameuse{regex_replace_all:nnN}{.}{{\0}}\bbl@tempb

3417 \fi

3418 \expandafter\bbl@casemapping@ii\bbl@tempb\@@}

3419 \def\bbl@casemapping@ii#1#2#3\@@{%

75

3420 \in@{#1#3}{<>}% i.e., if <u>, <l>, <t>

3421 \ifin@

3422 \edef\bbl@tempe{%

3423 \if#2u1 \else\if#2l2 \else\if#2t3 \fi\fi\fi}%

3424 \else

3425 \ifcase\bbl@tempe\relax

3426 \DeclareUppercaseMapping[\bbl@templ]{\bbl@utftocode{#1}}{#2}%

3427 \DeclareLowercaseMapping[\bbl@templ]{\bbl@utftocode{#2}}{#1}%

3428 \or

3429 \DeclareUppercaseMapping[\bbl@templ]{\bbl@utftocode{#1}}{#2}%

3430 \or

3431 \DeclareLowercaseMapping[\bbl@templ]{\bbl@utftocode{#1}}{#2}%

3432 \or

3433 \DeclareTitlecaseMapping[\bbl@templ]{\bbl@utftocode{#1}}{#2}%

3434 \fi

3435 \fi}

4.25. Getting info

The information in the identification section can be useful, so the following macro just exposes it

with a user command.

3436 \def\bbl@localeinfo#1#2{%

3437 \bbl@ifunset{bbl@info@#2}{#1}%

3438 {\bbl@ifunset{bbl@\csname bbl@info@#2\endcsname @\languagename}{#1}%

3439 {\bbl@cs{\csname bbl@info@#2\endcsname @\languagename}}}}

3440 \newcommand\localeinfo[1]{%

3441 \ifx*#1\@empty

3442 \bbl@afterelse\bbl@localeinfo{}%

3443 \else

3444 \bbl@localeinfo

3445 {\bbl@error{no-ini-info}{}{}{}}%

3446 {#1}%

3447 \fi}

3448 % \@namedef{bbl@info@name.locale}{lcname}

3449 \@namedef{bbl@info@tag.ini}{lini}

3450 \@namedef{bbl@info@name.english}{elname}

3451 \@namedef{bbl@info@name.opentype}{lname}

3452 \@namedef{bbl@info@tag.bcp47}{tbcp}

3453 \@namedef{bbl@info@language.tag.bcp47}{lbcp}

3454 \@namedef{bbl@info@tag.opentype}{lotf}

3455 \@namedef{bbl@info@script.name}{esname}

3456 \@namedef{bbl@info@script.name.opentype}{sname}

3457 \@namedef{bbl@info@script.tag.bcp47}{sbcp}

3458 \@namedef{bbl@info@script.tag.opentype}{sotf}

3459 \@namedef{bbl@info@region.tag.bcp47}{rbcp}

3460 \@namedef{bbl@info@variant.tag.bcp47}{vbcp}

3461 \@namedef{bbl@info@extension.t.tag.bcp47}{extt}

3462 \@namedef{bbl@info@extension.u.tag.bcp47}{extu}

3463 \@namedef{bbl@info@extension.x.tag.bcp47}{extx}

With version 3.75 \BabelEnsureInfo is executed always, but there is an option to disable it. Since

the info in ini files are always loaded, it has be made no-op in version 25.8.

3464 〈〈∗More package options〉〉 ≡
3465 \DeclareOption{ensureinfo=off}{}

3466 〈〈/More package options〉〉
3467 \let\BabelEnsureInfo\relax

More general, but non-expandable, is \getlocaleproperty.

3468 \newcommand\getlocaleproperty{%

3469 \@ifstar\bbl@getproperty@s\bbl@getproperty@x}

3470 \def\bbl@getproperty@s#1#2#3{%

3471 \let#1\relax

3472 \def\bbl@elt##1##2##3{%

3473 \bbl@ifsamestring{##1/##2}{#3}%

76

3474 {\providecommand#1{##3}%

3475 \def\bbl@elt####1####2####3{}}%

3476 {}}%

3477 \bbl@cs{inidata@#2}}%

3478 \def\bbl@getproperty@x#1#2#3{%

3479 \bbl@getproperty@s{#1}{#2}{#3}%

3480 \ifx#1\relax

3481 \bbl@error{unknown-locale-key}{#1}{#2}{#3}%

3482 \fi}

To inspect every possible loaded ini, we define \LocaleForEach, where \bbl@ini@loaded is a

comma-separated list of locales, built by \bbl@read@ini.

3483 \let\bbl@ini@loaded\@empty

3484 \newcommand\LocaleForEach{\bbl@foreach\bbl@ini@loaded}

3485 \def\ShowLocaleProperties#1{%

3486 \typeout{}%

3487 \typeout{*** Properties for language '#1' ***}

3488 \def\bbl@elt##1##2##3{\typeout{##1/##2 = \unexpanded{##3}}}%

3489 \@nameuse{bbl@inidata@#1}%

3490 \typeout{*******}}

4.26. BCP 47 related commands

This macro is called by language selectors when the language isn’t recognized. So, it’s the core for (1)

mapping from a BCP 27 tag to the actual language, if bcp47.toname is enabled (i.e., if bbl@bcptoname

is true), and (2) lazy loading. With autoload.bcp47 enabled and lazy loading, we must first build a

name for the language, with the help of autoload.bcp47.prefix. Then we use \provideprovide

passing the options set with autoload.bcp47.options (by default import). Finally, and if the locale

has not been loaded before, we use \provideprovide with the language name as passed to the

selector.

3491 \newif\ifbbl@bcpallowed

3492 \bbl@bcpallowedfalse

3493 \def\bbl@autoload@options{@import}

3494 \def\bbl@provide@locale{%

3495 \ifx\babelprovide\@undefined

3496 \bbl@error{base-on-the-fly}{}{}{}%

3497 \fi

3498 \let\bbl@auxname\languagename

3499 \ifbbl@bcptoname

3500 \bbl@ifunset{bbl@bcp@map@\languagename}{}% Move uplevel??

3501 {\edef\languagename{\@nameuse{bbl@bcp@map@\languagename}}%

3502 \let\localename\languagename}%

3503 \fi

3504 \ifbbl@bcpallowed

3505 \expandafter\ifx\csname date\languagename\endcsname\relax

3506 \expandafter

3507 \bbl@bcplookup\languagename-\@empty-\@empty-\@empty\@@

3508 \ifx\bbl@bcp\relax\else % Returned by \bbl@bcplookup

3509 \edef\languagename{\bbl@bcp@prefix\bbl@bcp}%

3510 \let\localename\languagename

3511 \expandafter\ifx\csname date\languagename\endcsname\relax

3512 \let\bbl@initoload\bbl@bcp

3513 \bbl@exp{\\\babelprovide[\bbl@autoload@bcpoptions]{\languagename}}%

3514 \let\bbl@initoload\relax

3515 \fi

3516 \bbl@csarg\xdef{bcp@map@\bbl@bcp}{\localename}%

3517 \fi

3518 \fi

3519 \fi

3520 \expandafter\ifx\csname date\languagename\endcsname\relax

3521 \IfFileExists{babel-\languagename.tex}%

3522 {\bbl@exp{\\\babelprovide[\bbl@autoload@options]{\languagename}}}%

3523 {}%

77

3524 \fi}

LATEX needs to know the BCP 47 codes for some features. For that, it expects \BCPdata to be defined.

While language, region, script, and variant are recognized, extension.〈s〉 for singletons may

change.

Still somewhat hackish. Note \str_if_eq:nnTF is fully expandable (\bbl@ifsamestring isn’t). The

argument is the prefix to tag.bcp47.

3525 \providecommand\BCPdata{}

3526 \ifx\renewcommand\@undefined\else

3527 \renewcommand\BCPdata[1]{\bbl@bcpdata@i#1\@empty\@empty\@empty}

3528 \def\bbl@bcpdata@i#1#2#3#4#5#6\@empty{%

3529 \@nameuse{str_if_eq:nnTF}{#1#2#3#4#5}{main.}%

3530 {\bbl@bcpdata@ii{#6}\bbl@main@language}%

3531 {\bbl@bcpdata@ii{#1#2#3#4#5#6}\languagename}}%

3532 \def\bbl@bcpdata@ii#1#2{%

3533 \bbl@ifunset{bbl@info@#1.tag.bcp47}%

3534 {\bbl@error{unknown-ini-field}{#1}{}{}}%

3535 {\bbl@ifunset{bbl@\csname bbl@info@#1.tag.bcp47\endcsname @#2}{}%

3536 {\bbl@cs{\csname bbl@info@#1.tag.bcp47\endcsname @#2}}}}

3537 \fi

3538 \@namedef{bbl@info@casing.tag.bcp47}{casing}

3539 \@namedef{bbl@info@tag.tag.bcp47}{tbcp} % For \BCPdata

5. Adjusting the Babel behavior

A generic high level interface is provided to adjust some global and general settings.

3540 \newcommand\babeladjust[1]{%

3541 \bbl@forkv{#1}{%

3542 \bbl@ifunset{bbl@ADJ@##1@##2}%

3543 {\bbl@cs{ADJ@##1}{##2}}%

3544 {\bbl@cs{ADJ@##1@##2}}}}

3545 %

3546 \def\bbl@adjust@lua#1#2{%

3547 \ifvmode

3548 \ifnum\currentgrouplevel=\z@

3549 \directlua{ Babel.#2 }%

3550 \expandafter\expandafter\expandafter\@gobble

3551 \fi

3552 \fi

3553 {\bbl@error{adjust-only-vertical}{#1}{}{}}}% Gobbled if everything went ok.

3554 \@namedef{bbl@ADJ@bidi.mirroring@on}{%

3555 \bbl@adjust@lua{bidi}{mirroring_enabled=true}}

3556 \@namedef{bbl@ADJ@bidi.mirroring@off}{%

3557 \bbl@adjust@lua{bidi}{mirroring_enabled=false}}

3558 \@namedef{bbl@ADJ@bidi.text@on}{%

3559 \bbl@adjust@lua{bidi}{bidi_enabled=true}}

3560 \@namedef{bbl@ADJ@bidi.text@off}{%

3561 \bbl@adjust@lua{bidi}{bidi_enabled=false}}

3562 \@namedef{bbl@ADJ@bidi.math@on}{%

3563 \let\bbl@noamsmath\@empty}

3564 \@namedef{bbl@ADJ@bidi.math@off}{%

3565 \let\bbl@noamsmath\relax}

3566 %

3567 \@namedef{bbl@ADJ@bidi.mapdigits@on}{%

3568 \bbl@adjust@lua{bidi}{digits_mapped=true}}

3569 \@namedef{bbl@ADJ@bidi.mapdigits@off}{%

3570 \bbl@adjust@lua{bidi}{digits_mapped=false}}

3571 %

3572 \@namedef{bbl@ADJ@linebreak.sea@on}{%

3573 \bbl@adjust@lua{linebreak}{sea_enabled=true}}

3574 \@namedef{bbl@ADJ@linebreak.sea@off}{%

3575 \bbl@adjust@lua{linebreak}{sea_enabled=false}}

78

3576 \@namedef{bbl@ADJ@linebreak.cjk@on}{%

3577 \bbl@adjust@lua{linebreak}{cjk_enabled=true}}

3578 \@namedef{bbl@ADJ@linebreak.cjk@off}{%

3579 \bbl@adjust@lua{linebreak}{cjk_enabled=false}}

3580 \@namedef{bbl@ADJ@justify.arabic@on}{%

3581 \bbl@adjust@lua{linebreak}{arabic.justify_enabled=true}}

3582 \@namedef{bbl@ADJ@justify.arabic@off}{%

3583 \bbl@adjust@lua{linebreak}{arabic.justify_enabled=false}}

3584 %

3585 \def\bbl@adjust@layout#1{%

3586 \ifvmode

3587 #1%

3588 \expandafter\@gobble

3589 \fi

3590 {\bbl@error{layout-only-vertical}{}{}{}}}% Gobbled if everything went ok.

3591 \@namedef{bbl@ADJ@layout.tabular@on}{%

3592 \ifnum\bbl@tabular@mode=\tw@

3593 \bbl@adjust@layout{\let\@tabular\bbl@NL@@tabular}%

3594 \else

3595 \chardef\bbl@tabular@mode\@ne

3596 \fi}

3597 \@namedef{bbl@ADJ@layout.tabular@off}{%

3598 \ifnum\bbl@tabular@mode=\tw@

3599 \bbl@adjust@layout{\let\@tabular\bbl@OL@@tabular}%

3600 \else

3601 \chardef\bbl@tabular@mode\z@

3602 \fi}

3603 \@namedef{bbl@ADJ@layout.lists@on}{%

3604 \bbl@adjust@layout{\let\list\bbl@NL@list}}

3605 \@namedef{bbl@ADJ@layout.lists@off}{%

3606 \bbl@adjust@layout{\let\list\bbl@OL@list}}

3607 %

3608 \@namedef{bbl@ADJ@autoload.bcp47@on}{%

3609 \bbl@bcpallowedtrue}

3610 \@namedef{bbl@ADJ@autoload.bcp47@off}{%

3611 \bbl@bcpallowedfalse}

3612 \@namedef{bbl@ADJ@autoload.bcp47.prefix}#1{%

3613 \def\bbl@bcp@prefix{#1}}

3614 \def\bbl@bcp@prefix{bcp47-}

3615 \@namedef{bbl@ADJ@autoload.options}#1{%

3616 \def\bbl@autoload@options{#1}}

3617 \def\bbl@autoload@bcpoptions{import}

3618 \@namedef{bbl@ADJ@autoload.bcp47.options}#1{%

3619 \def\bbl@autoload@bcpoptions{#1}}

3620 \newif\ifbbl@bcptoname

3621 %

3622 \@namedef{bbl@ADJ@bcp47.toname@on}{%

3623 \bbl@bcptonametrue}

3624 \@namedef{bbl@ADJ@bcp47.toname@off}{%

3625 \bbl@bcptonamefalse}

3626 %

3627 \@namedef{bbl@ADJ@prehyphenation.disable@nohyphenation}{%

3628 \directlua{ Babel.ignore_pre_char = function(node)

3629 return (node.lang == \the\csname l@nohyphenation\endcsname)

3630 end }}

3631 \@namedef{bbl@ADJ@prehyphenation.disable@off}{%

3632 \directlua{ Babel.ignore_pre_char = function(node)

3633 return false

3634 end }}

3635 %

3636 \@namedef{bbl@ADJ@interchar.disable@nohyphenation}{%

3637 \def\bbl@ignoreinterchar{%

3638 \ifnum\language=\l@nohyphenation

79

3639 \expandafter\@gobble

3640 \else

3641 \expandafter\@firstofone

3642 \fi}}

3643 \@namedef{bbl@ADJ@interchar.disable@off}{%

3644 \let\bbl@ignoreinterchar\@firstofone}

3645 %

3646 \@namedef{bbl@ADJ@select.write@shift}{%

3647 \let\bbl@restorelastskip\relax

3648 \def\bbl@savelastskip{%

3649 \let\bbl@restorelastskip\relax

3650 \ifvmode

3651 \ifdim\lastskip=\z@

3652 \let\bbl@restorelastskip\nobreak

3653 \else

3654 \bbl@exp{%

3655 \def\\\bbl@restorelastskip{%

3656 \skip@=\the\lastskip

3657 \\\nobreak \vskip-\skip@ \vskip\skip@}}%

3658 \fi

3659 \fi}}

3660 \@namedef{bbl@ADJ@select.write@keep}{%

3661 \let\bbl@restorelastskip\relax

3662 \let\bbl@savelastskip\relax}

3663 \@namedef{bbl@ADJ@select.write@omit}{%

3664 \AddBabelHook{babel-select}{beforestart}{%

3665 \expandafter\babel@aux\expandafter{\bbl@main@language}{}}%

3666 \let\bbl@restorelastskip\relax

3667 \def\bbl@savelastskip##1\bbl@restorelastskip{}}

3668 \@namedef{bbl@ADJ@select.encoding@off}{%

3669 \let\bbl@encoding@select@off\@empty}

5.1. Cross referencing macros

The LATEX book states:

The key argument is any sequence of letters, digits, and punctuation symbols; upper- and

lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a language that has active

characters, special care has to be taken of the category codes of these characters when they appear in

an argument of the cross referencing macros.

When a cross referencing command processes its argument, all tokens in this argument should be

character tokens with category ‘letter’ or ‘other’.

The following package options control which macros are to be redefined.

3670 〈〈∗More package options〉〉 ≡
3671 \DeclareOption{safe=none}{\let\bbl@opt@safe\@empty}

3672 \DeclareOption{safe=bib}{\def\bbl@opt@safe{B}}

3673 \DeclareOption{safe=ref}{\def\bbl@opt@safe{R}}

3674 \DeclareOption{safe=refbib}{\def\bbl@opt@safe{BR}}

3675 \DeclareOption{safe=bibref}{\def\bbl@opt@safe{BR}}

3676 〈〈/More package options〉〉

\@newl@bel First we open a new group to keep the changed setting of \protect local and then we

set the @safe@actives switch to true to make sure that any shorthand that appears in any of the

arguments immediately expands to its non-active self.

3677 \bbl@trace{Cross referencing macros}

3678 \ifx\bbl@opt@safe\@empty\else % i.e., if 'ref' and/or 'bib'

3679 \def\@newl@bel#1#2#3{%

3680 {\@safe@activestrue

3681 \bbl@ifunset{#1@#2}%

3682 \relax

3683 {\gdef\@multiplelabels{%

80

3684 \@latex@warning@no@line{There were multiply-defined labels}}%

3685 \@latex@warning@no@line{Label `#2' multiply defined}}%

3686 \global\@namedef{#1@#2}{#3}}}

\@testdef An internal LATEX macro used to test if the labels that have been written on the aux file have

changed. It is called by the \enddocumentmacro.

3687 \CheckCommand*\@testdef[3]{%

3688 \def\reserved@a{#3}%

3689 \expandafter\ifx\csname#1@#2\endcsname\reserved@a

3690 \else

3691 \@tempswatrue

3692 \fi}

Now that we made sure that \@testdef still has the same definition we can rewrite it. First we

make the shorthands ‘safe’. Then we use \bbl@tempa as an ‘alias’ for the macro that contains the

label which is being checked. Then we define \bbl@tempb just as \@newl@bel does it. When the label

is defined we replace the definition of \bbl@tempa by its meaning. If the label didn’t change,

\bbl@tempa and \bbl@tempb should be identical macros.

3693 \def\@testdef#1#2#3{%

3694 \@safe@activestrue

3695 \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname

3696 \def\bbl@tempb{#3}%

3697 \@safe@activesfalse

3698 \ifx\bbl@tempa\relax

3699 \else

3700 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempa}%

3701 \fi

3702 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

3703 \ifx\bbl@tempa\bbl@tempb

3704 \else

3705 \@tempswatrue

3706 \fi}

3707 \fi

\ref

\pageref The same holds for the macro \ref that references a label and \pageref to reference a

page. We make them robust as well (if they weren’t already) to prevent problems if they should

become expanded at the wrong moment.

3708 \bbl@xin@{R}\bbl@opt@safe

3709 \ifin@

3710 \edef\bbl@tempc{\expandafter\string\csname ref code\endcsname}%

3711 \bbl@xin@{\expandafter\strip@prefix\meaning\bbl@tempc}%

3712 {\expandafter\strip@prefix\meaning\ref}%

3713 \ifin@

3714 \bbl@redefine\@kernel@ref#1{%

3715 \@safe@activestrue\org@@kernel@ref{#1}\@safe@activesfalse}

3716 \bbl@redefine\@kernel@pageref#1{%

3717 \@safe@activestrue\org@@kernel@pageref{#1}\@safe@activesfalse}

3718 \bbl@redefine\@kernel@sref#1{%

3719 \@safe@activestrue\org@@kernel@sref{#1}\@safe@activesfalse}

3720 \bbl@redefine\@kernel@spageref#1{%

3721 \@safe@activestrue\org@@kernel@spageref{#1}\@safe@activesfalse}

3722 \else

3723 \bbl@redefinerobust\ref#1{%

3724 \@safe@activestrue\org@ref{#1}\@safe@activesfalse}

3725 \bbl@redefinerobust\pageref#1{%

3726 \@safe@activestrue\org@pageref{#1}\@safe@activesfalse}

3727 \fi

3728 \else

3729 \let\org@ref\ref

3730 \let\org@pageref\pageref

3731 \fi

81

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro, \@citex. It is this

internal macro that picks up the argument(s), so we redefine this internal macro and leave \cite

alone. The first argument is used for typesetting, so the shorthands need only be deactivated in the

second argument.

3732 \bbl@xin@{B}\bbl@opt@safe

3733 \ifin@

3734 \bbl@redefine\@citex[#1]#2{%

3735 \@safe@activestrue\edef\bbl@tempa{#2}\@safe@activesfalse

3736 \org@@citex[#1]{\bbl@tempa}}

Unfortunately, the packages natbib and cite need a different definition of \@citex... To begin

with, natbib has a definition for \@citex with three arguments... We only know that a package is

loaded when \begin{document} is executed, so we need to postpone the different redefinition.

Notice that we use \def here instead of \bbl@redefine because \org@@citex is already defined

and we don’t want to overwrite that definition (it would result in parameter stack overflow because

of a circular definition).

(Recent versions of natbib change dynamically \@citex, so PR4087 doesn’t seem fixable in a

simple way. Just load natbib before.)

3737 \AtBeginDocument{%

3738 \@ifpackageloaded{natbib}{%

3739 \def\@citex[#1][#2]#3{%

3740 \@safe@activestrue\edef\bbl@tempa{#3}\@safe@activesfalse

3741 \org@@citex[#1][#2]{\bbl@tempa}}%

3742 }{}}

The package cite has a definition of \@citex where the shorthands need to be turned off in both

arguments.

3743 \AtBeginDocument{%

3744 \@ifpackageloaded{cite}{%

3745 \def\@citex[#1]#2{%

3746 \@safe@activestrue\org@@citex[#1]{#2}\@safe@activesfalse}%

3747 }{}}

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references from the

database.

3748 \bbl@redefine\nocite#1{%

3749 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}

\bibcite The macro that is used in the aux file to define citation labels. When packages such as natbib

or cite are not loaded its second argument is used to typeset the citation label. In that case, this

second argument can contain active characters but is used in an environment where

\@safe@activestrue is in effect. This switch needs to be reset inside the \hbox which contains the

citation label. In order to determine during aux file processing which definition of \bibcite is

needed we define \bibcite in such a way that it redefines itself with the proper definition. We call

\bbl@cite@choice to select the proper definition for \bibcite. This new definition is then activated.

3750 \bbl@redefine\bibcite{%

3751 \bbl@cite@choice

3752 \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither natbib

nor cite is loaded.

3753 \def\bbl@bibcite#1#2{%

3754 \org@bibcite{#1}{\@safe@activesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.

First we give \bibcite its default definition.

3755 \def\bbl@cite@choice{%

3756 \global\let\bibcite\bbl@bibcite

3757 \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%

3758 \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%

3759 \global\let\bbl@cite@choice\relax}

82

When a document is run for the first time, no aux file is available, and \bibcite will not yet be

properly defined. In this case, this has to happen before the document starts.

3760 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal LATEX macros called by \bibitem that write the citation label on the

aux file.

3761 \bbl@redefine\@bibitem#1{%

3762 \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}

3763 \else

3764 \let\org@nocite\nocite

3765 \let\org@@citex\@citex

3766 \let\org@bibcite\bibcite

3767 \let\org@@bibitem\@bibitem

3768 \fi

5.2. Layout

3769 \newcommand\BabelPatchSection[1]{%

3770 \@ifundefined{#1}{}{%

3771 \bbl@exp{\let\<bbl@ss@#1>\<#1>}%

3772 \@namedef{#1}{%

3773 \@ifstar{\bbl@presec@s{#1}}%

3774 {\@dblarg{\bbl@presec@x{#1}}}}}}

3775 \def\bbl@presec@x#1[#2]#3{%

3776 \bbl@exp{%

3777 \\\select@language@x{\bbl@main@language}%

3778 \\\bbl@cs{sspre@#1}%

3779 \\\bbl@cs{ss@#1}%

3780 [\\\foreignlanguage{\languagename}{\unexpanded{#2}}]%

3781 {\\\foreignlanguage{\languagename}{\unexpanded{#3}}}%

3782 \\\select@language@x{\languagename}}}

3783 \def\bbl@presec@s#1#2{%

3784 \bbl@exp{%

3785 \\\select@language@x{\bbl@main@language}%

3786 \\\bbl@cs{sspre@#1}%

3787 \\\bbl@cs{ss@#1}*%

3788 {\\\foreignlanguage{\languagename}{\unexpanded{#2}}}%

3789 \\\select@language@x{\languagename}}}

3790 %

3791 \IfBabelLayout{sectioning}%

3792 {\BabelPatchSection{part}%

3793 \BabelPatchSection{chapter}%

3794 \BabelPatchSection{section}%

3795 \BabelPatchSection{subsection}%

3796 \BabelPatchSection{subsubsection}%

3797 \BabelPatchSection{paragraph}%

3798 \BabelPatchSection{subparagraph}%

3799 \def\babel@toc#1{%

3800 \select@language@x{\bbl@main@language}}}{}

3801 \IfBabelLayout{captions}%

3802 {\BabelPatchSection{caption}}{}

\BabelFootnote Footnotes.

3803 \bbl@trace{Footnotes}

3804 \def\bbl@footnote#1#2#3{%

3805 \@ifnextchar[%

3806 {\bbl@footnote@o{#1}{#2}{#3}}%

3807 {\bbl@footnote@x{#1}{#2}{#3}}}

3808 \long\def\bbl@footnote@x#1#2#3#4{%

3809 \bgroup

3810 \select@language@x{\bbl@main@language}%

3811 \bbl@fn@footnote{#2#1{\ignorespaces#4}#3}%

83

3812 \egroup}

3813 \long\def\bbl@footnote@o#1#2#3[#4]#5{%

3814 \bgroup

3815 \select@language@x{\bbl@main@language}%

3816 \bbl@fn@footnote[#4]{#2#1{\ignorespaces#5}#3}%

3817 \egroup}

3818 \def\bbl@footnotetext#1#2#3{%

3819 \@ifnextchar[%

3820 {\bbl@footnotetext@o{#1}{#2}{#3}}%

3821 {\bbl@footnotetext@x{#1}{#2}{#3}}}

3822 \long\def\bbl@footnotetext@x#1#2#3#4{%

3823 \bgroup

3824 \select@language@x{\bbl@main@language}%

3825 \bbl@fn@footnotetext{#2#1{\ignorespaces#4}#3}%

3826 \egroup}

3827 \long\def\bbl@footnotetext@o#1#2#3[#4]#5{%

3828 \bgroup

3829 \select@language@x{\bbl@main@language}%

3830 \bbl@fn@footnotetext[#4]{#2#1{\ignorespaces#5}#3}%

3831 \egroup}

3832 \def\BabelFootnote#1#2#3#4{%

3833 \ifx\bbl@fn@footnote\@undefined

3834 \let\bbl@fn@footnote\footnote

3835 \fi

3836 \ifx\bbl@fn@footnotetext\@undefined

3837 \let\bbl@fn@footnotetext\footnotetext

3838 \fi

3839 \bbl@ifblank{#2}%

3840 {\def#1{\bbl@footnote{\@firstofone}{#3}{#4}}

3841 \@namedef{\bbl@stripslash#1text}%

3842 {\bbl@footnotetext{\@firstofone}{#3}{#4}}}%

3843 {\def#1{\bbl@exp{\\\bbl@footnote{\\\foreignlanguage{#2}}}{#3}{#4}}%

3844 \@namedef{\bbl@stripslash#1text}%

3845 {\bbl@exp{\\\bbl@footnotetext{\\\foreignlanguage{#2}}}{#3}{#4}}}}

3846 \IfBabelLayout{footnotes}%

3847 {\let\bbl@OL@footnote\footnote

3848 \BabelFootnote\footnote\languagename{}{}%

3849 \BabelFootnote\localfootnote\languagename{}{}%

3850 \BabelFootnote\mainfootnote{}{}{}}

3851 {}

5.3. Marks

\markright Because the output routine is asynchronous, we must pass the current language attribute

to the head lines. To achieve this we need to adapt the definition of \markright and \markboth

somewhat. However, headlines and footlines can contain text outside marks; for that we must take

some actions in the output routine if the ’headfoot’ options is used.

We need to make some redefinitions to the output routine to avoid an endless loop and to correctly

handle the page number in bidi documents.

3852 \bbl@trace{Marks}

3853 \IfBabelLayout{sectioning}

3854 {\ifx\bbl@opt@headfoot\@nnil

3855 \g@addto@macro\@resetactivechars{%

3856 \set@typeset@protect

3857 \expandafter\select@language@x\expandafter{\bbl@main@language}%

3858 \let\protect\noexpand

3859 \ifcase\bbl@bidimode\else % Only with bidi. See also above

3860 \edef\thepage{%

3861 \noexpand\babelsublr{\unexpanded\expandafter{\thepage}}}%

3862 \fi}%

3863 \fi}

3864 {\ifbbl@single\else

3865 \bbl@ifunset{markright }\bbl@redefine\bbl@redefinerobust

84

3866 \markright#1{%

3867 \bbl@ifblank{#1}%

3868 {\org@markright{}}%

3869 {\toks@{#1}%

3870 \bbl@exp{%

3871 \\\org@markright{\\\protect\\\foreignlanguage{\languagename}%

3872 {\\\protect\\\bbl@restore@actives\the\toks@}}}}}%

\markboth

\@mkboth The definition of \markboth is equivalent to that of \markright, except that we need two

token registers. The documentclasses report and book define and set the headings for the page.

While doing so they also store a copy of \markboth in \@mkboth. Therefore we need to check whether

\@mkboth has already been set. If so we need to do that again with the new definition of \markboth.

(As of Oct 2019, LATEX stores the definition in an intermediate macro, so it’s not necessary anymore,

but it’s preserved for older versions.)

3873 \ifx\@mkboth\markboth

3874 \def\bbl@tempc{\let\@mkboth\markboth}%

3875 \else

3876 \def\bbl@tempc{}%

3877 \fi

3878 \bbl@ifunset{markboth }\bbl@redefine\bbl@redefinerobust

3879 \markboth#1#2{%

3880 \protected@edef\bbl@tempb##1{%

3881 \protect\foreignlanguage

3882 {\languagename}{\protect\bbl@restore@actives##1}}%

3883 \bbl@ifblank{#1}%

3884 {\toks@{}}%

3885 {\toks@\expandafter{\bbl@tempb{#1}}}%

3886 \bbl@ifblank{#2}%

3887 {\@temptokena{}}%

3888 {\@temptokena\expandafter{\bbl@tempb{#2}}}%

3889 \bbl@exp{\\\org@markboth{\the\toks@}{\the\@temptokena}}}%

3890 \bbl@tempc

3891 \fi} % end ifbbl@single, end \IfBabelLayout

5.4. Other packages

5.4.1. ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the page a

certain fragment of text appears on. This can be achieved by the following piece of code:

% \ifthenelse{\isodd{\pageref{some-label}}}

% {code for odd pages}

% {code for even pages}

%

In order for this to work the argument of \isodd needs to be fully expandable. With the above

redefinition of \pageref it is not in the case of this example. To overcome that, we add some code to

the definition of \ifthenelse to make things work.

We want to revert the definition of \pageref and \ref to their original definition for the first

argument of \ifthenelse, so we first need to store their current meanings.

Then we can set the \@safe@actives switch and call the original \ifthenelse. In order to be able

to use shorthands in the second and third arguments of \ifthenelse the resetting of the switch and

the definition of \pageref happens inside those arguments.

3892 \bbl@trace{Preventing clashes with other packages}

3893 \ifx\org@ref\@undefined\else

3894 \bbl@xin@{R}\bbl@opt@safe

3895 \ifin@

3896 \AtBeginDocument{%

3897 \@ifpackageloaded{ifthen}{%

3898 \bbl@redefine@long\ifthenelse#1#2#3{%

85

3899 \let\bbl@temp@pref\pageref

3900 \let\pageref\org@pageref

3901 \let\bbl@temp@ref\ref

3902 \let\ref\org@ref

3903 \@safe@activestrue

3904 \org@ifthenelse{#1}%

3905 {\let\pageref\bbl@temp@pref

3906 \let\ref\bbl@temp@ref

3907 \@safe@activesfalse

3908 #2}%

3909 {\let\pageref\bbl@temp@pref

3910 \let\ref\bbl@temp@ref

3911 \@safe@activesfalse

3912 #3}%

3913 }%

3914 }{}%

3915 }

3916 \fi

5.4.2. varioref

\@@vpageref

\vrefpagenum

\Ref When the package varioref is in use we need to modify its internal command \@@vpageref in

order to prevent problems when an active character ends up in the argument of \vref. The same

needs to happen for \vrefpagenum.

3917 \AtBeginDocument{%

3918 \@ifpackageloaded{varioref}{%

3919 \bbl@redefine\@@vpageref#1[#2]#3{%

3920 \@safe@activestrue

3921 \org@@@vpageref{#1}[#2]{#3}%

3922 \@safe@activesfalse}%

3923 \bbl@redefine\vrefpagenum#1#2{%

3924 \@safe@activestrue

3925 \org@vrefpagenum{#1}{#2}%

3926 \@safe@activesfalse}%

The package varioref defines \Ref to be a robust command which uppercases the first character

of the reference text. In order to be able to do that it needs to access the expandable form of \ref. So

we employ a little trick here. We redefine the (internal) command \Ref to call \org@ref instead of

\ref. The disadvantage of this solution is that whenever the definition of \Ref changes, this

definition needs to be updated as well.

3927 \expandafter\def\csname Ref \endcsname#1{%

3928 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\@tempa}

3929 }{}%

3930 }

3931 \fi

5.4.3. hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with the

hhline package. The reason is that it uses the ‘:’ character which is made active by the french support

in babel. Therefore we need to reload the package when the ‘:’ is an active character. Note that this

happens after the category code of the @-sign has been changed to other, so we need to temporarily

change it to letter again.

3932 \AtEndOfPackage{%

3933 \AtBeginDocument{%

3934 \@ifpackageloaded{hhline}%

3935 {\expandafter\ifx\csname normal@char\string:\endcsname\relax

3936 \else

3937 \makeatletter

3938 \def\@currname{hhline}\input{hhline.sty}\makeatother

86

3939 \fi}%

3940 {}}}

\substitutefontfamily Deprecated. It creates an fd file on the fly. The first argument is an encoding

mnemonic, the second and third arguments are font family names. Use the tools provided by LATEX

(\DeclareFontFamilySubstitution).

3941 \def\substitutefontfamily#1#2#3{%

3942 \lowercase{\immediate\openout15=#1#2.fd\relax}%

3943 \immediate\write15{%

3944 \string\ProvidesFile{#1#2.fd}%

3945 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}

3946 \space generated font description file]^^J

3947 \string\DeclareFontFamily{#1}{#2}{}^^J

3948 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}^^J

3949 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}^^J

3950 \string\DeclareFontShape{#1}{#2}{m}{sl}{<->ssub * #3/m/sl}{}^^J

3951 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}^^J

3952 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}^^J

3953 \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}^^J

3954 \string\DeclareFontShape{#1}{#2}{b}{sl}{<->ssub * #3/bx/sl}{}^^J

3955 \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}^^J

3956 }%

3957 \closeout15

3958 }

3959 \@onlypreamble\substitutefontfamily

5.5. Encoding and fonts

Because documents may use non-ASCII font encodings, we make sure that the logos of TEX and LATEX

always come out in the right encoding. There is a list of non-ASCII encodings. Requested encodings

are currently stored in \@fontenc@load@list. If a non-ASCII has been loaded, we define versions of

\TeX and \LaTeX for them using \ensureascii. The default ASCII encoding is set, too (in reverse

order): the “main” encoding (when the document begins), the last loaded, or OT1.

\ensureascii

3960 \bbl@trace{Encoding and fonts}

3961 \newcommand\BabelNonASCII{LGR,LGI,X2,OT2,OT3,OT6,LHE,LWN,LMA,LMC,LMS,LMU}

3962 \newcommand\BabelNonText{TS1,T3,TS3}

3963 \let\org@TeX\TeX

3964 \let\org@LaTeX\LaTeX

3965 \let\ensureascii\@firstofone

3966 \let\asciiencoding\@empty

3967 \AtBeginDocument{%

3968 \def\@elt#1{,#1,}%

3969 \edef\bbl@tempa{\expandafter\@gobbletwo\@fontenc@load@list}%

3970 \let\@elt\relax

3971 \let\bbl@tempb\@empty

3972 \def\bbl@tempc{OT1}%

3973 \bbl@foreach\BabelNonASCII{% LGR loaded in a non-standard way

3974 \bbl@ifunset{T@#1}{}{\def\bbl@tempb{#1}}}%

3975 \bbl@foreach\bbl@tempa{%

3976 \bbl@xin@{,#1,}{,\BabelNonASCII,}%

3977 \ifin@

3978 \def\bbl@tempb{#1}% Store last non-ascii

3979 \else\bbl@xin@{,#1,}{,\BabelNonText,}% Pass

3980 \ifin@\else

3981 \def\bbl@tempc{#1}% Store last ascii

3982 \fi

3983 \fi}%

3984 \ifx\bbl@tempb\@empty\else

3985 \bbl@xin@{,\cf@encoding,}{,\BabelNonASCII,\BabelNonText,}%

3986 \ifin@\else

87

3987 \edef\bbl@tempc{\cf@encoding}% The default if ascii wins

3988 \fi

3989 \let\asciiencoding\bbl@tempc

3990 \renewcommand\ensureascii[1]{%

3991 {\fontencoding{\asciiencoding}\selectfont#1}}%

3992 \DeclareTextCommandDefault{\TeX}{\ensureascii{\org@TeX}}%

3993 \DeclareTextCommandDefault{\LaTeX}{\ensureascii{\org@LaTeX}}%

3994 \fi}

Now comes the old deprecated stuff (with a little change in 3.9l, for fontspec). The first thing we

need to do is to determine, at \begin{document}, which latin fontencoding to use.

\latinencoding When text is being typeset in an encoding other than ‘latin’ (OT1 or T1), it would be

nice to still have Roman numerals come out in the Latin encoding. So we first assume that the

current encoding at the end of processing the package is the Latin encoding.

3995 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}

But this might be overruled with a later loading of the package fontenc. Therefore we check at the

execution of \begin{document} whether it was loaded with the T1 option. The normal way to do this

(using \@ifpackageloaded) is disabled for this package. Now we have to revert to parsing the

internal macro \@filelist which contains all the filenames loaded.

3996 \AtBeginDocument{%

3997 \@ifpackageloaded{fontspec}%

3998 {\xdef\latinencoding{%

3999 \ifx\UTFencname\@undefined

4000 EU\ifcase\bbl@engine\or2\or1\fi

4001 \else

4002 \UTFencname

4003 \fi}}%

4004 {\gdef\latinencoding{OT1}%

4005 \ifx\cf@encoding\bbl@t@one

4006 \xdef\latinencoding{\bbl@t@one}%

4007 \else

4008 \def\@elt#1{,#1,}%

4009 \edef\bbl@tempa{\expandafter\@gobbletwo\@fontenc@load@list}%

4010 \let\@elt\relax

4011 \bbl@xin@{,T1,}\bbl@tempa

4012 \ifin@

4013 \xdef\latinencoding{\bbl@t@one}%

4014 \fi

4015 \fi}}

\latintext Then we can define the command \latintext which is a declarative switch to a latin

font-encoding. Usage of this macro is deprecated.

4016 \DeclareRobustCommand{\latintext}{%

4017 \fontencoding{\latinencoding}\selectfont

4018 \def\encodingdefault{\latinencoding}}

\textlatin This command takes an argument which is then typeset using the requested font encoding.

In order to avoid many encoding switches it operates in a local scope.

4019 \ifx\@undefined\DeclareTextFontCommand

4020 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}

4021 \else

4022 \DeclareTextFontCommand{\textlatin}{\latintext}

4023 \fi

For several functions, we need to execute some code with \selectfont. With LATEX 2021-06-01,

there is a hook for this purpose.

4024 \def\bbl@patchfont#1{\AddToHook{selectfont}{#1}}

88

5.6. Basic bidi support

This code is currently placed here for practical reasons. It will be moved to the correct place soon, I

hope.

It is loosely based on rlbabel.def, but most of it has been developed from scratch. This babel

module (by Johannes Braams and Boris Lavva) has served the purpose of typesetting R documents

for two decades, and despite its flaws I think it is still a good starting point (some parts have been

copied here almost verbatim), partly thanks to its simplicity. I’ve also looked at arabi (by Youssef

Jabri), which is compatible with babel.

There are two ways of modifying macros to make them “bidi”, namely, by patching the internal

low-level macros (which is what I have done with lists, columns, counters, tocs, much like rlbabel

did), and by introducing a “middle layer” just below the user interface (sectioning, footnotes).

• pdftex provides a minimal support for bidi text, and it must be done by hand. Vertical typesetting

is not possible.

• xetex is somewhat better, thanks to its font engine (even if not always reliable) and a few

additional tools. However, very little is done at the paragraph level. Another challenging problem

is text direction does not honour TEX grouping.

• luatex can provide the most complete solution, as we can manipulate almost freely the node list,

the generated lines, and so on, but bidi text does not work out of the box and some development

is necessary. It also provides tools to properly set left-to-right and right-to-left page layouts. As

LuaTEX-ja shows, vertical typesetting is possible, too.

4025 \bbl@trace{Loading basic (internal) bidi support}

4026 \ifodd\bbl@engine

4027 \else % Any xe+lua bidi

4028 \ifnum\bbl@bidimode>100 \ifnum\bbl@bidimode<200

4029 \bbl@error{bidi-only-lua}{}{}{}%

4030 \let\bbl@beforeforeign\leavevmode

4031 \AtEndOfPackage{%

4032 \EnableBabelHook{babel-bidi}%

4033 \bbl@xebidipar}

4034 \fi\fi

4035 \def\bbl@loadxebidi#1{%

4036 \ifx\RTLfootnotetext\@undefined

4037 \AtEndOfPackage{%

4038 \EnableBabelHook{babel-bidi}%

4039 \ifx\fontspec\@undefined

4040 \usepackage{fontspec}% bidi needs fontspec

4041 \fi

4042 \usepackage#1{bidi}%

4043 \let\bbl@digitsdotdash\DigitsDotDashInterCharToks

4044 \def\DigitsDotDashInterCharToks{% See the 'bidi' package

4045 \ifnum\@nameuse{bbl@wdir@\languagename}=\tw@ % 'AL' bidi

4046 \bbl@digitsdotdash % So ignore in 'R' bidi

4047 \fi}}%

4048 \fi}

4049 \ifnum\bbl@bidimode>200 % Any xe bidi=

4050 \ifcase\expandafter\@gobbletwo\the\bbl@bidimode\or

4051 \bbl@tentative{bidi=bidi}

4052 \bbl@loadxebidi{}

4053 \or

4054 \bbl@loadxebidi{[rldocument]}

4055 \or

4056 \bbl@loadxebidi{}

4057 \fi

4058 \fi

4059 \fi

4060 \ifnum\bbl@bidimode=\@ne % bidi=default

4061 \let\bbl@beforeforeign\leavevmode

4062 \ifodd\bbl@engine % lua

4063 \newattribute\bbl@attr@dir

4064 \directlua{ Babel.attr_dir = luatexbase.registernumber'bbl@attr@dir' }

4065 \bbl@exp{\output{\bodydir\pagedir\the\output}}

89

4066 \fi

4067 \AtEndOfPackage{%

4068 \EnableBabelHook{babel-bidi}% pdf/lua/xe

4069 \ifodd\bbl@engine\else % pdf/xe

4070 \bbl@xebidipar

4071 \fi}

4072 \fi

Now come the macros used to set the direction when a language is switched. Testing are based on

script names, because it’s the user interface (including language and script in \babelprovide. First

the (mostly) common macros.

4073 \bbl@trace{Macros to switch the text direction}

4074 \def\bbl@alscripts{%

4075 ,Arabic,Syriac,Thaana,Hanifi Rohingya,Hanifi,Sogdian,}

4076 \def\bbl@rscripts{%

4077 Adlam,Avestan,Chorasmian,Cypriot,Elymaic,Garay,%

4078 Hatran,Hebrew,Imperial Aramaic,Inscriptional Pahlavi,%

4079 Inscriptional Parthian,Kharoshthi,Lydian,Mandaic,Manichaean,%

4080 Mende Kikakui,Meroitic Cursive,Meroitic Hieroglyphs,Nabataean,%

4081 Nko,Old Hungarian,Old North Arabian,Old Sogdian,%

4082 Old South Arabian,Old Turkic,Old Uyghur,Palmyrene,Phoenician,%

4083 Psalter Pahlavi,Samaritan,Yezidi,Mandaean,%

4084 Meroitic,N'Ko,Orkhon,Todhri}

4085 %

4086 \def\bbl@provide@dirs#1{%

4087 \bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts\bbl@rscripts}%

4088 \ifin@

4089 \global\bbl@csarg\chardef{wdir@#1}\@ne

4090 \bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts}%

4091 \ifin@

4092 \global\bbl@csarg\chardef{wdir@#1}\tw@

4093 \fi

4094 \else

4095 \global\bbl@csarg\chardef{wdir@#1}\z@

4096 \fi

4097 \ifodd\bbl@engine

4098 \bbl@csarg\ifcase{wdir@#1}%

4099 \directlua{ Babel.locale_props[\the\localeid].textdir = 'l' }%

4100 \or

4101 \directlua{ Babel.locale_props[\the\localeid].textdir = 'r' }%

4102 \or

4103 \directlua{ Babel.locale_props[\the\localeid].textdir = 'al' }%

4104 \fi

4105 \fi}

4106 %

4107 \def\bbl@switchdir{%

4108 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

4109 \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%

4110 \bbl@exp{\\\bbl@setdirs\bbl@cl{wdir}}}

4111 \def\bbl@setdirs#1{%

4112 \ifcase\bbl@select@type

4113 \bbl@bodydir{#1}%

4114 \bbl@pardir{#1}% <- Must precede \bbl@textdir

4115 \fi

4116 \bbl@textdir{#1}}

4117 \ifnum\bbl@bidimode>\z@

4118 \AddBabelHook{babel-bidi}{afterextras}{\bbl@switchdir}

4119 \DisableBabelHook{babel-bidi}

4120 \fi

Now the engine-dependent macros.

4121 \ifodd\bbl@engine % luatex=1

4122 \else % pdftex=0, xetex=2

4123 \newcount\bbl@dirlevel

90

4124 \chardef\bbl@thetextdir\z@

4125 \chardef\bbl@thepardir\z@

4126 \def\bbl@textdir#1{%

4127 \ifcase#1\relax

4128 \chardef\bbl@thetextdir\z@

4129 \@nameuse{setlatin}%

4130 \bbl@textdir@i\beginL\endL

4131 \else

4132 \chardef\bbl@thetextdir\@ne

4133 \@nameuse{setnonlatin}%

4134 \bbl@textdir@i\beginR\endR

4135 \fi}

4136 \def\bbl@textdir@i#1#2{%

4137 \ifhmode

4138 \ifnum\currentgrouplevel>\z@

4139 \ifnum\currentgrouplevel=\bbl@dirlevel

4140 \bbl@error{multiple-bidi}{}{}{}%

4141 \bgroup\aftergroup#2\aftergroup\egroup

4142 \else

4143 \ifcase\currentgrouptype\or % 0 bottom

4144 \aftergroup#2% 1 simple {}

4145 \or

4146 \bgroup\aftergroup#2\aftergroup\egroup % 2 hbox

4147 \or

4148 \bgroup\aftergroup#2\aftergroup\egroup % 3 adj hbox

4149 \or\or\or % vbox vtop align

4150 \or

4151 \bgroup\aftergroup#2\aftergroup\egroup % 7 noalign

4152 \or\or\or\or\or\or % output math disc insert vcent mathchoice

4153 \or

4154 \aftergroup#2% 14 \begingroup

4155 \else

4156 \bgroup\aftergroup#2\aftergroup\egroup % 15 adj

4157 \fi

4158 \fi

4159 \bbl@dirlevel\currentgrouplevel

4160 \fi

4161 #1%

4162 \fi}

4163 \def\bbl@pardir#1{\chardef\bbl@thepardir#1\relax}

4164 \let\bbl@bodydir\@gobble

4165 \def\bbl@dirparastext{\chardef\bbl@thepardir\bbl@thetextdir}

The following command is executed only if there is a right-to-left script (once). It activates the

\everypar hack for xetex, to properly handle the par direction. Note text and par dirs are decoupled

to some extent (although not completely).

4166 \def\bbl@xebidipar{%

4167 \let\bbl@xebidipar\relax

4168 \TeXXeTstate\@ne

4169 \def\bbl@xeeverypar{%

4170 \ifcase\bbl@thepardir

4171 \ifcase\bbl@thetextdir\else\beginR\fi

4172 \else

4173 {\setbox\z@\lastbox\beginR\box\z@}%

4174 \fi}%

4175 \AddToHook{para/begin}{\bbl@xeeverypar}}

4176 \ifnum\bbl@bidimode>200 % Any xe bidi=

4177 \let\bbl@textdir@i\@gobbletwo

4178 \let\bbl@xebidipar\@empty

4179 \AddBabelHook{bidi}{foreign}{%

4180 \ifcase\bbl@thetextdir

4181 \BabelWrapText{\LR{##1}}%

4182 \else

91

4183 \BabelWrapText{\RL{##1}}%

4184 \fi}

4185 \def\bbl@pardir#1{\ifcase#1\relax\setLR\else\setRL\fi}

4186 \fi

4187 \fi

A tool for weak L (mainly digits). We also disable warnings with hyperref.

4188 \DeclareRobustCommand\babelsublr[1]{\leavevmode{\bbl@textdir\z@#1}}

4189 \AtBeginDocument{%

4190 \ifx\pdfstringdefDisableCommands\@undefined\else

4191 \ifx\pdfstringdefDisableCommands\relax\else

4192 \pdfstringdefDisableCommands{\let\babelsublr\@firstofone}%

4193 \fi

4194 \fi}

5.7. Local Language Configuration

\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language definition

file. This can be done by creating a file with the same name as the language definition file, but with

the extension .cfg. For instance the file norsk.cfg will be loaded when the language definition file

norsk.ldf is loaded.

For plain-based formats we don’t want to override the definition of \loadlocalcfg from

plain.def.

4195 \bbl@trace{Local Language Configuration}

4196 \ifx\loadlocalcfg\@undefined

4197 \@ifpackagewith{babel}{noconfigs}%

4198 {\let\loadlocalcfg\@gobble}%

4199 {\def\loadlocalcfg#1{%

4200 \InputIfFileExists{#1.cfg}%

4201 {\typeout{*************************************^^J%

4202 * Local config file #1.cfg used^^J%

4203 *}}%

4204 \@empty}}

4205 \fi

5.8. Language options

Languages are loaded when processing the corresponding option except if a main language has been

set. In such a case, it is not loaded until all options has been processed. The following macro inputs

the ldf file and does some additional checks (\input works, too, but possible errors are not caught).

4206 \bbl@trace{Language options}

4207 \def\BabelDefinitionFile#1#2#3{}

4208 \let\bbl@afterlang\relax

4209 \let\BabelModifiers\relax

4210 \let\bbl@loaded\@empty

4211 \def\bbl@load@language#1{%

4212 \InputIfFileExists{#1.ldf}%

4213 {\edef\bbl@loaded{\CurrentOption

4214 \ifx\bbl@loaded\@empty\else,\bbl@loaded\fi}%

4215 \expandafter\let\expandafter\bbl@afterlang

4216 \csname\CurrentOption.ldf-h@@k\endcsname

4217 \expandafter\let\expandafter\BabelModifiers

4218 \csname bbl@mod@\CurrentOption\endcsname

4219 \bbl@exp{\\\AtBeginDocument{%

4220 \\\bbl@usehooks@lang{\CurrentOption}{begindocument}{{\CurrentOption}}}}}%

4221 {\bbl@error{unknown-package-option}{}{}{}}}

Another way to extend the list of ‘known’ options for babel was to create the file bblopts.cfg in

which one can add option declarations. However, this mechanism is deprecated – if you want an

alternative name for a language, just create a new ldf file loading the actual one. You can also set the

name of the file with the package option config=〈name〉, which will load 〈name〉.cfg instead.
If the language as been set as metadata, read the info from the corresponding ini file and extract

the babel name. Then added it as a package option at the end, so that it becomes the main language.

92

The behavior of a metatag with a global language option is not well defined, so if there is not a main

option we set here explicitly.

Tagging PDF Span elements requires horizontal mode. With DocumentMetada we also force it with

\foreignlanguage (this is also done in bidi texts).

4222 \ifx\GetDocumentProperties\@undefined\else

4223 \let\bbl@beforeforeign\leavevmode

4224 \edef\bbl@metalang{\GetDocumentProperties{document/lang}}%

4225 \ifx\bbl@metalang\@empty\else

4226 \begingroup

4227 \expandafter

4228 \bbl@bcplookup\bbl@metalang-\@empty-\@empty-\@empty\@@

4229 \ifx\bbl@bcp\relax

4230 \ifx\bbl@opt@main\@nnil

4231 \bbl@error{no-locale-for-meta}{\bbl@metalang}{}{}%

4232 \fi

4233 \else

4234 \bbl@read@ini{\bbl@bcp}\m@ne

4235 \xdef\bbl@language@opts{\bbl@language@opts,\languagename}%

4236 \ifx\bbl@opt@main\@nnil

4237 \global\let\bbl@opt@main\languagename

4238 \fi

4239 \bbl@info{Passing \languagename\space to babel.\\%

4240 This will be the main language except if\\%

4241 explictly overriden with 'main='.\\%

4242 Reported}%

4243 \fi

4244 \endgroup

4245 \fi

4246 \fi

4247 \ifx\bbl@opt@config\@nnil

4248 \@ifpackagewith{babel}{noconfigs}{}%

4249 {\InputIfFileExists{bblopts.cfg}%

4250 {\bbl@info{Configuration files are deprecated, as\\%

4251 they can break document portability.\\%

4252 Reported}%

4253 \typeout{*************************************^^J%

4254 * Local config file bblopts.cfg used^^J%

4255 *}}%

4256 {}}%

4257 \else

4258 \InputIfFileExists{\bbl@opt@config.cfg}%

4259 {\bbl@info{Configuration files are deprecated, as\\%

4260 they can break document portability.\\%

4261 Reported}%

4262 \typeout{*************************************^^J%

4263 * Local config file \bbl@opt@config.cfg used^^J%

4264 *}}%

4265 {\bbl@error{config-not-found}{}{}{}}%

4266 \fi

Recognizing global options in packages not having a closed set of them is not trivial, as for them to

be processed they must be defined explicitly. So, package options not yet taken into account and

stored in bbl@language@opts are assumed to be languages. If not declared above, the names of the

option and the file are the same. We first pre-process the class and package options to determine the

available locales, and which version (ldf or ini will be loaded. This is done by first loading the

corresponding babel-〈name〉.tex file.
The second argument of \BabelBeforeInimay content a \BabelDefinitionFile which defines

\bbl@tempa and \bbl@tempb and saves the third argument for the moment of the actual loading. If

there is no \BabelDefinitionFile the last element is usually empty, and the ini file is loaded. The

values are used to build a list in the form ‘main-or-not’ / ‘ldf-or-ldfìni-flag’ // ‘option-name’ //

‘bcp-tag’ / ‘ldf-name-or-none’. The ‘main-or-not’ element is 0 by default and set to 10 later if

necessary (by prepending 1). The ‘bcp-tag’ is stored here so that the corresponding ini file can be be

loaded directly (with @import).

93

4267 \def\BabelBeforeIni#1#2{%

4268 \def\bbl@tempa{\@m}% <- Default if no \BDefFile

4269 \let\bbl@tempb\@empty

4270 #2%

4271 \edef\bbl@toload{%

4272 \ifx\bbl@toload\@empty\else\bbl@toload,\fi

4273 \bbl@toload@last}%

4274 \edef\bbl@toload@last{0/\bbl@tempa//\CurrentOption//#1/\bbl@tempb}}

4275 \def\BabelDefinitionFile#1#2#3{%

4276 \def\bbl@tempa{#1}\def\bbl@tempb{#2}%

4277 \@namedef{bbl@preldf@\CurrentOption}{#3}%

4278 \endinput}%

For efficiency, first preprocess the class options to remove those with =, which are becoming

increasingly frequent (no language should contain this character). Here we use the more robust

macro to traverse a clist from the LATEX3 layer.

4279 \def\bbl@tempf{,}

4280 \@nameuse{clist_map_inline:Nn}\@raw@classoptionslist{%

4281 \in@{=}{#1}%

4282 \ifin@\else

4283 \edef\bbl@tempf{\bbl@tempf\zap@space#1 \@empty,}%

4284 \fi}

Store the class/package options in a list. If there is an explicit main, it’s placed as the last option.

Then loop it to read the tex files, which can have a \BabelDefinitionFile. If there is no tex file, we

attempt loading the ldf for the option name; if it fails, an error is raised. Note the option name is

surrounded by //...//. Class and package options are separated with @@, because errors and info

are dealt with in different ways. Consecutive identical languages count as one.

4285 \let\bbl@toload\@empty

4286 \let\bbl@toload@last\@empty

4287 \let\bbl@unkopt\@gobble %% <- Ugly

4288 \edef\bbl@tempc{%

4289 \bbl@tempf,@@,\bbl@language@opts

4290 \ifx\bbl@opt@main\@nnil\else,\bbl@opt@main\fi}

4291 \let\BabelLocalesTentative\bbl@tempc

4292 %

4293 \bbl@foreach\bbl@tempc{%

4294 \in@{@@}{#1}% <- Ugly

4295 \ifin@

4296 \def\bbl@unkopt##1{%

4297 \DeclareOption{##1}{\bbl@error{unknown-package-option}{}{}{}}}%

4298 \else

4299 \def\CurrentOption{#1}%

4300 \bbl@xin@{//#1//}{\bbl@toload@last}% Collapse consecutive

4301 \ifin@\else

4302 \lowercase{\InputIfFileExists{babel-#1.tex}}{}{%

4303 \IfFileExists{#1.ldf}%

4304 {\edef\bbl@toload{%

4305 \ifx\bbl@toload\@empty\else\bbl@toload,\fi

4306 \bbl@toload@last}%

4307 \edef\bbl@toload@last{0/0//\CurrentOption//und/#1}}%

4308 {\bbl@unkopt{#1}}}%

4309 \fi

4310 \fi}

We have to determine (1) if no language has be loaded (in which case we fallback to ‘nil’, with a

special tag), and (2) the main language. With an explicit ‘main’ language, remove repeated elements.

The number 1 flags it as the main language (relevant in ini locales), because with 0 becomes 10.

4311 \ifx\bbl@opt@main\@nnil

4312 \ifx\bbl@toload@last\@empty

4313 \def\bbl@toload@last{0/0//nil//und-x-nil/nil}

4314 \bbl@info{%

4315 You haven't specified a language as a class or package\\%

4316 option. I'll load 'nil'. Reported}

94

4317 \fi

4318 \else

4319 \let\bbl@tempc\@empty

4320 \bbl@foreach\bbl@toload{%

4321 \bbl@xin@{//\bbl@opt@main//}{#1}%

4322 \ifin@\else

4323 \bbl@add@list\bbl@tempc{#1}%

4324 \fi}

4325 \let\bbl@toload\bbl@tempc

4326 \fi

4327 \edef\bbl@toload{\bbl@toload,1\bbl@toload@last}

Finally, load the ‘ini‘ file or the pair ‘ini‘/‘ldf‘ file. Babel resorts to its own mechanism, not the

default one based on \ProcessOptions (which is still present to make some internal clean-up). First,

handle provide=! and friends (with a recursive call if they are present), and then provide=* and

friend. \count@ is used as flag: 0 if ‘ini’, 1 if ‘ldf’.

4328 \def\AfterBabelLanguage#1{%

4329 \bbl@ifsamestring\CurrentOption{#1}{\global\bbl@add\bbl@afterlang}{}}

4330 \NewHook{babel/presets}

4331 \UseHook{babel/presets}

4332 %

4333 \let\bbl@tempb\@empty

4334 \def\bbl@tempc#1/#2//#3//#4/#5\@@{%

4335 \count@\z@

4336 \ifnum#2=\@m % if no \BabelDefinitionFile

4337 \ifnum#1=\z@ % not main. -- % if provide+=!, provide*=!

4338 \ifnum\bbl@ldfflag>\@ne\bbl@tempc 0/0//#3//#4/#3\@@

4339 \else\bbl@tempd{#1}{#2}{#3}{#4}{#5}%

4340 \fi

4341 \else % 10 = main -- % if provide=!, provide*=!

4342 \ifodd\bbl@ldfflag\bbl@tempc 10/0//#3//#4/#3\@@

4343 \else\bbl@tempd{#1}{#2}{#3}{#4}{#5}%

4344 \fi

4345 \fi

4346 \else

4347 \ifnum#1=\z@ % not main

4348 \ifnum\bbl@iniflag>\@ne\else % if ø, provide

4349 \ifcase#2\count@\@ne\else\ifcase\bbl@engine\count@\@ne\fi\fi

4350 \fi

4351 \else % 10 = main

4352 \ifodd\bbl@iniflag\else % if provide+, provide*

4353 \ifcase#2\count@\@ne\else\ifcase\bbl@engine\count@\@ne\fi\fi

4354 \fi

4355 \fi

4356 \bbl@tempd{#1}{#2}{#3}{#4}{#5}%

4357 \fi}

Based on the value of \count@, do the actual loading. If ‘ldf’, we load the basic info from the ‘ini’ file

before.

4358 \def\bbl@tempd#1#2#3#4#5{%

4359 \DeclareOption{#3}{}%

4360 \ifcase\count@

4361 \bbl@exp{\\\bbl@add\\\bbl@tempb{%

4362 \\\@nameuse{bbl@preini@#3}%

4363 \\\bbl@ldfinit

4364 \def\\\CurrentOption{#3}%

4365 \\\babelprovide[@import=#4,\ifnum#1=\z@\else\bbl@opt@provide,main\fi]{#3}%

4366 \\\bbl@afterldf}}%

4367 \else

4368 \bbl@add\bbl@tempb{%

4369 \def\CurrentOption{#3}%

4370 \let\localename\CurrentOption

4371 \let\languagename\localename

4372 \def\BabelIniTag{#4}%

95

4373 \@nameuse{bbl@preldf@#3}%

4374 \begingroup

4375 \bbl@id@assign

4376 \bbl@read@ini{\BabelIniTag}0%

4377 \endgroup

4378 \bbl@load@language{#5}}%

4379 \fi}

4380 %

4381 \bbl@foreach\bbl@toload{\bbl@tempc#1\@@}

4382 \bbl@tempb

4383 \DeclareOption*{}

4384 \ProcessOptions

4385 %

4386 \bbl@exp{%

4387 \\\AtBeginDocument{\\\bbl@usehooks@lang{/}{begindocument}{{}}}}%

4388 \def\AfterBabelLanguage{\bbl@error{late-after-babel}{}{}{}}

4389 〈/package〉

6. The kernel of Babel

The kernel of the babel system is currently stored in babel.def. The file babel.def contains most of

the code. The file hyphen.cfg is a file that can be loaded into the format, which is necessary when

you want to be able to switch hyphenation patterns.

Because plain TEX users might want to use some of the features of the babel system too, care has to

be taken that plain TEX can process the files. For this reason the current format will have to be

checked in a number of places. Some of the code below is common to plain TEX and LATEX, some of it is

for the LATEX case only.

Plain formats based on etex (etex, xetex, luatex) don’t load hyphen.cfg but etex.src, which

follows a different naming convention, so we need to define the babel names. It presumes

language.def exists and it is the same file used when formats were created.

A proxy file for switch.def

4390 〈∗kernel〉
4391 \let\bbl@onlyswitch\@empty

4392 \input babel.def

4393 \let\bbl@onlyswitch\@undefined

4394 〈/kernel〉

7. Error messages

They are loaded when \bll@error is first called. To save space, the main code just identifies them

with a tag, and messages are stored in a separate file. Since it can be loaded anywhere, you make

sure some catcodes have the right value, although those for \, `, ^^M, % and = are reset before loading

the file.

4395 〈∗errors〉
4396 \catcode`\{=1 \catcode`\}=2 \catcode`\#=6

4397 \catcode`\:=12 \catcode`\,=12 \catcode`\.=12 \catcode`\-=12

4398 \catcode`\'=12 \catcode`\(=12 \catcode`\)=12

4399 \catcode`\@=11 \catcode`\^=7

4400 %

4401 \ifx\MessageBreak\@undefined

4402 \gdef\bbl@error@i#1#2{%

4403 \begingroup

4404 \newlinechar=`\^^J

4405 \def\\{^^J(babel) }%

4406 \errhelp{#2}\errmessage{\\#1}%

4407 \endgroup}

4408 \else

4409 \gdef\bbl@error@i#1#2{%

4410 \begingroup

4411 \def\\{\MessageBreak}%

4412 \PackageError{babel}{#1}{#2}%

96

4413 \endgroup}

4414 \fi

4415 \def\bbl@errmessage#1#2#3{%

4416 \expandafter\gdef\csname bbl@err@#1\endcsname##1##2##3{%

4417 \bbl@error@i{#2}{#3}}}

4418 % Implicit #2#3#4:

4419 \gdef\bbl@error#1{\csname bbl@err@#1\endcsname}

4420 %

4421 \bbl@errmessage{not-yet-available}

4422 {Not yet available}%

4423 {Find an armchair, sit down and wait}

4424 \bbl@errmessage{bad-package-option}%

4425 {Bad option '#1=#2'. Either you have misspelled the\\%

4426 key or there is a previous setting of '#1'. Valid\\%

4427 keys are, among others, 'shorthands', 'main', 'bidi',\\%

4428 'strings', 'config', 'headfoot', 'safe', 'math'.}%

4429 {See the manual for further details.}

4430 \bbl@errmessage{base-on-the-fly}

4431 {For a language to be defined on the fly 'base'\\%

4432 is not enough, and the whole package must be\\%

4433 loaded. Either delete the 'base' option or\\%

4434 request the languages explicitly}%

4435 {See the manual for further details.}

4436 \bbl@errmessage{undefined-language}

4437 {You haven't defined the language '#1' yet.\\%

4438 Perhaps you misspelled it or your installation\\%

4439 is not complete}%

4440 {Your command will be ignored, type <return> to proceed}

4441 \bbl@errmessage{invalid-ini-name}

4442 {'#1' not valid with the 'ini' mechanism.\\%

4443 I think you want '#2' instead. You may continue,\\%

4444 but you should fix the name. See the babel manual\\%

4445 for the available locales with 'provide'}%

4446 {See the manual for further details.}

4447 \bbl@errmessage{shorthand-is-off}

4448 {I can't declare a shorthand turned off (\string#2)}

4449 {Sorry, but you can't use shorthands which have been\\%

4450 turned off in the package options}

4451 \bbl@errmessage{not-a-shorthand}

4452 {The character '\string #1' should be made a shorthand character;\\%

4453 add the command \string\useshorthands\string{#1\string} to

4454 the preamble.\\%

4455 I will ignore your instruction}%

4456 {You may proceed, but expect unexpected results}

4457 \bbl@errmessage{not-a-shorthand-b}

4458 {I can't switch '\string#2' on or off--not a shorthand\\%

4459 This character is not a shorthand. Maybe you made\\%

4460 a typing mistake?}%

4461 {I will ignore your instruction.}

4462 \bbl@errmessage{unknown-attribute}

4463 {The attribute #2 is unknown for language #1.}%

4464 {Your command will be ignored, type <return> to proceed}

4465 \bbl@errmessage{missing-group}

4466 {Missing group for string \string#1}%

4467 {You must assign strings to some category, typically\\%

4468 captions or extras, but you set none}

4469 \bbl@errmessage{only-lua-xe}

4470 {This macro is available only in LuaLaTeX and XeLaTeX.}%

4471 {Consider switching to these engines.}

4472 \bbl@errmessage{only-lua}

4473 {This macro is available only in LuaLaTeX}%

4474 {Consider switching to that engine.}

4475 \bbl@errmessage{unknown-provide-key}

97

4476 {Unknown key '#1' in \string\babelprovide}%

4477 {See the manual for valid keys}%

4478 \bbl@errmessage{unknown-mapfont}

4479 {Option '\bbl@KVP@mapfont' unknown for\\%

4480 mapfont. Use 'direction'}%

4481 {See the manual for details.}

4482 \bbl@errmessage{no-ini-file}

4483 {There is no ini file for the requested language\\%

4484 (#1: \languagename). Perhaps you misspelled it or your\\%

4485 installation is not complete}%

4486 {Fix the name or reinstall babel.}

4487 \bbl@errmessage{digits-is-reserved}

4488 {The counter name 'digits' is reserved for mapping\\%

4489 decimal digits}%

4490 {Use another name.}

4491 \bbl@errmessage{limit-two-digits}

4492 {Currently two-digit years are restricted to the\\

4493 range 0-9999}%

4494 {There is little you can do. Sorry.}

4495 \bbl@errmessage{alphabetic-too-large}

4496 {Alphabetic numeral too large (#1)}%

4497 {Currently this is the limit.}

4498 \bbl@errmessage{no-ini-info}

4499 {I've found no info for the current locale.\\%

4500 The corresponding ini file has not been loaded\\%

4501 Perhaps it doesn't exist}%

4502 {See the manual for details.}

4503 \bbl@errmessage{unknown-ini-field}

4504 {Unknown field '#1' in \string\BCPdata.\\%

4505 Perhaps you misspelled it}%

4506 {See the manual for details.}

4507 \bbl@errmessage{unknown-locale-key}

4508 {Unknown key for locale '#2':\\%

4509 #3\\%

4510 \string#1 will be set to \string\relax}%

4511 {Perhaps you misspelled it.}%

4512 \bbl@errmessage{adjust-only-vertical}

4513 {Currently, #1 related features can be adjusted only\\%

4514 in the main vertical list}%

4515 {Maybe things change in the future, but this is what it is.}

4516 \bbl@errmessage{layout-only-vertical}

4517 {Currently, layout related features can be adjusted only\\%

4518 in vertical mode}%

4519 {Maybe things change in the future, but this is what it is.}

4520 \bbl@errmessage{bidi-only-lua}

4521 {The bidi method 'basic' is available only in\\%

4522 luatex. I'll continue with 'bidi=default', so\\%

4523 expect wrong results.\\%

4524 Suggested actions:\\%

4525 * If possible, switch to luatex, as xetex is not\\%

4526 recommend anymore.\\

4527 * If you can’t, try 'bidi=bidi' with xetex.\\%

4528 * With pdftex, only 'bidi=default' is available.}%

4529 {See the manual for further details.}

4530 \bbl@errmessage{multiple-bidi}

4531 {Multiple bidi settings inside a group\\%

4532 I'll insert a new group, but expect wrong results.\\%

4533 Suggested action:\\%

4534 * Add a new group where appropriate.}

4535 {See the manual for further details.}

4536 \bbl@errmessage{unknown-package-option}

4537 {Unknown option '\CurrentOption'.\\%

4538 Suggested actions:\\%

98

4539 * Make sure you haven’t misspelled it\\%

4540 * Check in the babel manual that it's supported\\%

4541 * If supported and it's a language, you may\\%

4542 \space\space need in some distributions a separate\\%

4543 \space\space installation\\%

4544 * If installed, check there isn’t an old\\%

4545 \space\space version of the required files in your system\\%

4546 * If it's an unsupported language, create it with\\%

4547 \string\babelprovide (see the manual)}

4548 {Valid options are, among others: shorthands=, KeepShorthandsActive,\\%

4549 activeacute, activegrave, noconfigs, safe=, main=, math=\\%

4550 headfoot=, strings=, config=, hyphenmap=, or a language name.}

4551 \bbl@errmessage{config-not-found}

4552 {Local config file '\bbl@opt@config.cfg' not found.\\%

4553 Suggested actions:\\%

4554 * Make sure you haven’t misspelled it in config=\\%

4555 * Check it exists and it’s in the correct path}%

4556 {Perhaps you misspelled it.}

4557 \bbl@errmessage{late-after-babel}

4558 {Too late for \string\AfterBabelLanguage}%

4559 {Languages have been loaded, so I can do nothing}

4560 \bbl@errmessage{double-hyphens-class}

4561 {Double hyphens aren't allowed in \string\babelcharclass\\%

4562 because it's potentially ambiguous}%

4563 {See the manual for further info}

4564 \bbl@errmessage{unknown-interchar}

4565 {'#1' for '\languagename' cannot be enabled.\\%

4566 Maybe there is a typo}%

4567 {See the manual for further details.}

4568 \bbl@errmessage{unknown-interchar-b}

4569 {'#1' for '\languagename' cannot be disabled.\\%

4570 Maybe there is a typo}%

4571 {See the manual for further details.}

4572 \bbl@errmessage{charproperty-only-vertical}

4573 {\string\babelcharproperty\space can be used only in\\%

4574 vertical mode (preamble or between paragraphs)}%

4575 {See the manual for further info}

4576 \bbl@errmessage{unknown-char-property}

4577 {No property named '#2'. Allowed values are\\%

4578 direction (bc), mirror (bmg), and linebreak (lb)}%

4579 {See the manual for further info}

4580 \bbl@errmessage{bad-transform-option}

4581 {Bad option '#1' in a transform.\\%

4582 I’ll ignore it but expect more errors}%

4583 {See the manual for further info.}

4584 \bbl@errmessage{font-conflict-transforms}

4585 {Transforms cannot be re-assigned to different\\%

4586 fonts. The conflict is in '\bbl@kv@label'.\\%

4587 Apply the same fonts or use a different label}%

4588 {See the manual for further details.}

4589 \bbl@errmessage{transform-not-available}

4590 {'#1' for '\languagename' cannot be enabled.\\%

4591 Maybe there is a typo or it’s a font-dependent transform}%

4592 {See the manual for further details.}

4593 \bbl@errmessage{transform-not-available-b}

4594 {'#1' for '\languagename' cannot be disabled.\\%

4595 Maybe there is a typo or it’s a font-dependent transform}%

4596 {See the manual for further details.}

4597 \bbl@errmessage{year-out-range}

4598 {Year out of range.\\%

4599 The allowed range is #1}%

4600 {See the manual for further details.}

4601 \bbl@errmessage{only-pdftex-lang}

99

4602 {The '#1' ldf style doesn't work with #2,\\%

4603 but you can use the ini locale instead.\\%

4604 Try adding 'provide=*' to the option list. You may\\%

4605 also want to set 'bidi=' to some value}%

4606 {See the manual for further details.}

4607 \bbl@errmessage{hyphenmins-args}

4608 {\string\babelhyphenmins\ accepts either the optional\\%

4609 argument or the star, but not both at the same time}%

4610 {See the manual for further details.}

4611 \bbl@errmessage{no-locale-for-meta}

4612 {There isn't currently a locale for the 'lang' requested\\%

4613 in the PDF metadata ('#1'). To fix it, you can\\%

4614 set explicitly a similar language (using the same\\%

4615 script) with the key main= when loading babel. If you\\%

4616 continue, I'll fallback to the 'nil' language, with\\%

4617 tag 'und' and script 'Latn', but expect a bad font\\%

4618 rendering with other scripts. You may also need set\\%

4619 explicitly captions and date, too}%

4620 {See the manual for further details.}

4621 〈/errors〉
4622 〈∗patterns〉

8. Loading hyphenation patterns

The following code is meant to be read by iniTEX because it should instruct TEX to read hyphenation

patterns. To this end the docstrip option patterns is used to include this code in the file

hyphen.cfg. Code is written with lower level macros.

4623 <@Make sure ProvidesFile is defined@>

4624 \ProvidesFile{hyphen.cfg}[<@date@> v<@version@> Babel hyphens]

4625 \xdef\bbl@format{\jobname}

4626 \def\bbl@version{<@version@>}

4627 \def\bbl@date{<@date@>}

4628 \ifx\AtBeginDocument\@undefined

4629 \def\@empty{}

4630 \fi

4631 <@Define core switching macros@>

\process@line Each line in the file language.dat is processed by \process@line after it is read. The

first thing this macro does is to check whether the line starts with =. When the first token of a line is

an =, the macro \process@synonym is called; otherwise the macro \process@language will continue.

4632 \def\process@line#1#2 #3 #4 {%

4633 \ifx=#1%

4634 \process@synonym{#2}%

4635 \else

4636 \process@language{#1#2}{#3}{#4}%

4637 \fi

4638 \ignorespaces}

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token

register to begin with. \bbl@languages is also set to empty.

4639 \toks@{}

4640 \def\bbl@languages{}

When no languages have been loaded yet, the name following the = will be a synonym for

hyphenation register 0. So, it is stored in a token register and executed when the first pattern file has

been processed. (The \relax just helps to the \if below catching synonyms without a language.)

Otherwise the name will be a synonym for the language loaded last.

We also need to copy the hyphenmin parameters for the synonym.

4641 \def\process@synonym#1{%

4642 \ifnum\last@language=\m@ne

4643 \toks@\expandafter{\the\toks@\relax\process@synonym{#1}}%

100

4644 \else

4645 \expandafter\chardef\csname l@#1\endcsname\last@language

4646 \wlog{\string\l@#1=\string\language\the\last@language}%

4647 \expandafter\let\csname #1hyphenmins\expandafter\endcsname

4648 \csname\languagename hyphenmins\endcsname

4649 \let\bbl@elt\relax

4650 \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{\the\last@language}{}{}}%

4651 \fi}

\process@language The macro \process@language is used to process a non-empty line from the

‘configuration file’. It has three arguments, each delimited by white space. The first argument is the

‘name’ of a language; the second is the name of the file that contains the patterns. The optional third

argument is the name of a file containing hyphenation exceptions.

The first thing to do is call \addlanguage to allocate a pattern register and to make that register

‘active’. Then the pattern file is read.

For some hyphenation patterns it is needed to load them with a specific font encoding selected.

This can be specified in the file language.dat by adding for instance ‘:T1’ to the name of the

language. The macro \bbl@get@enc extracts the font encoding from the language name and stores it

in \bbl@hyph@enc. The latter can be used in hyphenation files if you need to set a behavior

depending on the given encoding (it is set to empty if no encoding is given).

Pattern files may contain assignments to \lefthyphenmin and \righthyphenmin. TEX does not keep

track of these assignments. Therefore we try to detect such assignments and store them in the

\〈language〉hyphenminsmacro. When no assignments were made we provide a default setting.

Some pattern files contain changes to the \lccode en \uccode arrays. Such changes should remain

local to the language; therefore we process the pattern file in a group; the \patterns command acts

globally so its effect will be remembered.

Then we globally store the settings of \lefthyphenmin and \righthyphenmin and close the group.

When the hyphenation patterns have been processed we need to see if a file with hyphenation

exceptions needs to be read. This is the case when the third argument is not empty and when it does

not contain a space token. (Note however there is no need to save hyphenation exceptions into the

format.)

\bbl@languages saves a snapshot of the loaded languages in the form

\bbl@elt{〈language-name〉}{〈number〉} {〈patterns-file〉}{〈exceptions-file〉}. Note the last 2
arguments are empty in ‘dialects’ defined in language.dat with =. Note also the language name can

have encoding info.

Finally, if the counter \language is equal to zero we execute the synonyms stored.

4652 \def\process@language#1#2#3{%

4653 \expandafter\addlanguage\csname l@#1\endcsname

4654 \expandafter\language\csname l@#1\endcsname

4655 \edef\languagename{#1}%

4656 \bbl@hook@everylanguage{#1}%

4657 % > luatex

4658 \bbl@get@enc#1::\@@@

4659 \begingroup

4660 \lefthyphenmin\m@ne

4661 \bbl@hook@loadpatterns{#2}%

4662 % > luatex

4663 \ifnum\lefthyphenmin=\m@ne

4664 \else

4665 \expandafter\xdef\csname #1hyphenmins\endcsname{%

4666 \the\lefthyphenmin\the\righthyphenmin}%

4667 \fi

4668 \endgroup

4669 \def\bbl@tempa{#3}%

4670 \ifx\bbl@tempa\@empty\else

4671 \bbl@hook@loadexceptions{#3}%

4672 % > luatex

4673 \fi

4674 \let\bbl@elt\relax

4675 \edef\bbl@languages{%

4676 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{\bbl@tempa}}%

4677 \ifnum\the\language=\z@

101

4678 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

4679 \set@hyphenmins\tw@\thr@@\relax

4680 \else

4681 \expandafter\expandafter\expandafter\set@hyphenmins

4682 \csname #1hyphenmins\endcsname

4683 \fi

4684 \the\toks@

4685 \toks@{}%

4686 \fi}

\bbl@get@enc

\bbl@hyph@enc The macro \bbl@get@enc extracts the font encoding from the language name and

stores it in \bbl@hyph@enc. It uses delimited arguments to achieve this.

4687 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}

Now, hooks are defined. For efficiency reasons, they are dealt here in a special way. Besides luatex,

format-specific configuration files are taken into account. loadkernel currently loads nothing, but

define some basic macros instead.

4688 \def\bbl@hook@everylanguage#1{}

4689 \def\bbl@hook@loadpatterns#1{\input #1\relax}

4690 \let\bbl@hook@loadexceptions\bbl@hook@loadpatterns

4691 \def\bbl@hook@loadkernel#1{%

4692 \def\addlanguage{\csname newlanguage\endcsname}%

4693 \def\adddialect##1##2{%

4694 \global\chardef##1##2\relax

4695 \wlog{\string##1 = a dialect from \string\language##2}}%

4696 \def\iflanguage##1{%

4697 \expandafter\ifx\csname l@##1\endcsname\relax

4698 \@nolanerr{##1}%

4699 \else

4700 \ifnum\csname l@##1\endcsname=\language

4701 \expandafter\expandafter\expandafter\@firstoftwo

4702 \else

4703 \expandafter\expandafter\expandafter\@secondoftwo

4704 \fi

4705 \fi}%

4706 \def\providehyphenmins##1##2{%

4707 \expandafter\ifx\csname ##1hyphenmins\endcsname\relax

4708 \@namedef{##1hyphenmins}{##2}%

4709 \fi}%

4710 \def\set@hyphenmins##1##2{%

4711 \lefthyphenmin##1\relax

4712 \righthyphenmin##2\relax}%

4713 \def\selectlanguage{%

4714 \errhelp{Selecting a language requires a package supporting it}%

4715 \errmessage{No multilingual package has been loaded}}%

4716 \let\foreignlanguage\selectlanguage

4717 \let\otherlanguage\selectlanguage

4718 \expandafter\let\csname otherlanguage*\endcsname\selectlanguage

4719 \def\bbl@usehooks##1##2{}%

4720 \def\setlocale{%

4721 \errhelp{Find an armchair, sit down and wait}%

4722 \errmessage{(babel) Not yet available}}%

4723 \let\uselocale\setlocale

4724 \let\locale\setlocale

4725 \let\selectlocale\setlocale

4726 \let\localename\setlocale

4727 \let\textlocale\setlocale

4728 \let\textlanguage\setlocale

4729 \let\languagetext\setlocale}

4730 \begingroup

4731 \def\AddBabelHook#1#2{%

4732 \expandafter\ifx\csname bbl@hook@#2\endcsname\relax

102

4733 \def\next{\toks1}%

4734 \else

4735 \def\next{\expandafter\gdef\csname bbl@hook@#2\endcsname####1}%

4736 \fi

4737 \next}

4738 \ifx\directlua\@undefined

4739 \ifx\XeTeXinputencoding\@undefined\else

4740 \input xebabel.def

4741 \fi

4742 \else

4743 \input luababel.def

4744 \fi

4745 \openin1 = babel-\bbl@format.cfg

4746 \ifeof1

4747 \else

4748 \input babel-\bbl@format.cfg\relax

4749 \fi

4750 \closein1

4751 \endgroup

4752 \bbl@hook@loadkernel{switch.def}

\readconfigfile The configuration file can now be opened for reading.

4753 \openin1 = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The user will be informed

about this.

4754 \def\languagename{english}%

4755 \ifeof1

4756 \message{I couldn't find the file language.dat,\space

4757 I will try the file hyphen.tex}

4758 \input hyphen.tex\relax

4759 \chardef\l@english\z@

4760 \else

Pattern registers are allocated using count register \last@language. Its initial value is 0. The

definition of the macro \newlanguage is such that it first increments the count register and then

defines the language. In order to have the first patterns loaded in pattern register number 0 we

initialize \last@language with the value−1.

4761 \last@language\m@ne

We now read lines from the file until the end is found. While reading from the input, it is useful to

switch off recognition of the end-of-line character. This saves us stripping off spaces from the

contents of the control sequence.

4762 \loop

4763 \endlinechar\m@ne

4764 \read1 to \bbl@line

4765 \endlinechar`\^^M

If the file has reached its end, exit from the loop here. If not, empty lines are skipped. Add 3 space

characters to the end of \bbl@line. This is needed to be able to recognize the arguments of

\process@line later on. The default language should be the very first one.

4766 \if T\ifeof1F\fi T\relax

4767 \ifx\bbl@line\@empty\else

4768 \edef\bbl@line{\bbl@line\space\space\space}%

4769 \expandafter\process@line\bbl@line\relax

4770 \fi

4771 \repeat

Check for the end of the file. We must reverse the test for \ifeof without \else. Then reactivate

the default patterns, and close the configuration file.

4772 \begingroup

4773 \def\bbl@elt#1#2#3#4{%

4774 \global\language=#2\relax

103

4775 \gdef\languagename{#1}%

4776 \def\bbl@elt##1##2##3##4{}}%

4777 \bbl@languages

4778 \endgroup

4779 \fi

4780 \closein1

We add a message about the fact that babel is loaded in the format and with which language

patterns to the \everyjob register.

4781 \if/\the\toks@/\else

4782 \errhelp{language.dat loads no language, only synonyms}

4783 \errmessage{Orphan language synonym}

4784 \fi

Also remove some macros from memory and raise an error if \toks@ is not empty. Finally load

switch.def, but the latter is not required and the line inputting it may be commented out.

4785 \let\bbl@line\@undefined

4786 \let\process@line\@undefined

4787 \let\process@synonym\@undefined

4788 \let\process@language\@undefined

4789 \let\bbl@get@enc\@undefined

4790 \let\bbl@hyph@enc\@undefined

4791 \let\bbl@tempa\@undefined

4792 \let\bbl@hook@loadkernel\@undefined

4793 \let\bbl@hook@everylanguage\@undefined

4794 \let\bbl@hook@loadpatterns\@undefined

4795 \let\bbl@hook@loadexceptions\@undefined

4796 〈/patterns〉

Here the code for iniTEX ends.

9. luatex + xetex: common stuff

Add the bidi handler just before luaotfload, which is loaded by default by LaTeX. Just in case,

consider the possibility it has not been loaded. First, a couple of definitions related to bidi (although

default also applies to pdftex).

4797 〈〈∗More package options〉〉 ≡
4798 \chardef\bbl@bidimode\z@

4799 \DeclareOption{bidi=default}{\chardef\bbl@bidimode=\@ne}

4800 \DeclareOption{bidi=basic}{\chardef\bbl@bidimode=101 }

4801 \DeclareOption{bidi=basic-r}{\chardef\bbl@bidimode=102 }

4802 \DeclareOption{bidi=bidi}{\chardef\bbl@bidimode=201 }

4803 \DeclareOption{bidi=bidi-r}{\chardef\bbl@bidimode=202 }

4804 \DeclareOption{bidi=bidi-l}{\chardef\bbl@bidimode=203 }

4805 〈〈/More package options〉〉

\babelfont With explicit languages, we could define the font at once, but we don’t. Just wait and see if

the language is actually activated. bbl@font replaces hardcoded font names inside \..family by the

corresponding macro \..default.

4806 〈〈∗Font selection〉〉 ≡
4807 \bbl@trace{Font handling with fontspec}

4808 \AddBabelHook{babel-fontspec}{afterextras}{\bbl@switchfont}

4809 \AddBabelHook{babel-fontspec}{beforestart}{\bbl@ckeckstdfonts}

4810 \DisableBabelHook{babel-fontspec}

4811 \@onlypreamble\babelfont

4812 \ifx\NewDocumentCommand\@undefined\else % Not plain

4813 \NewDocumentCommand\babelfont{O{}mO{}mO{}}{%

4814 \bbl@bblfont@o[#1]{#2}[#3,#5]{#4}}

4815 \fi

4816 \newcommand\bbl@bblfont@o[2][]{% 1=langs/scripts 2=fam

4817 \ifx\fontspec\@undefined

4818 \usepackage{fontspec}%

104

4819 \fi

4820 \EnableBabelHook{babel-fontspec}%

4821 \edef\bbl@tempa{#1}%

4822 \def\bbl@tempb{#2}% Used by \bbl@bblfont

4823 \bbl@bblfont}

4824 \newcommand\bbl@bblfont[2][]{% 1=features 2=fontname, @font=rm|sf|tt

4825 \bbl@ifunset{\bbl@tempb family}%

4826 {\bbl@providefam{\bbl@tempb}}%

4827 {}%

4828 % For the default font, just in case:

4829 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

4830 \expandafter\bbl@ifblank\expandafter{\bbl@tempa}%

4831 {\bbl@csarg\edef{\bbl@tempb dflt@}{<>{#1}{#2}}% save bbl@rmdflt@

4832 \bbl@exp{%

4833 \let\<bbl@\bbl@tempb dflt@\languagename>\<bbl@\bbl@tempb dflt@>%

4834 \\\bbl@font@set\<bbl@\bbl@tempb dflt@\languagename>%

4835 \<\bbl@tempb default>\<\bbl@tempb family>}}%

4836 {\bbl@foreach\bbl@tempa{% i.e., bbl@rmdflt@lang / *scrt

4837 \bbl@csarg\def{\bbl@tempb dflt@##1}{<>{#1}{#2}}}}}%

If the family in the previous command does not exist, it must be defined. Here is how:

4838 \def\bbl@providefam#1{%

4839 \bbl@exp{%

4840 \\\newcommand\<#1default>{}% Just define it

4841 \\\bbl@add@list\\\bbl@font@fams{#1}%

4842 \\\NewHook{#1family}%

4843 \\\DeclareRobustCommand\<#1family>{%

4844 \\\not@math@alphabet\<#1family>\relax

4845 % \\\prepare@family@series@update{#1}\<#1default>% TODO. Fails

4846 \\\fontfamily\<#1default>%

4847 \\\UseHook{#1family}%

4848 \\\selectfont}%

4849 \\\DeclareTextFontCommand{\<text#1>}{\<#1family>}}}

The following macro is activated when the hook babel-fontspec is enabled. But before, we define

a macro for a warning, which sets a flag to avoid duplicate them.

4850 \def\bbl@nostdfont#1{%

4851 \bbl@once{nostdfam-\f@family}%

4852 {\bbl@infowarn{The current font is not a babel standard family:\\%

4853 #1%

4854 \fontname\font\\%

4855 There is nothing intrinsically wrong, and you can\\%,

4856 ignore this message altogether if you do not need\\%

4857 this font. If they are used in the document, be aware\\%

4858 'babel' will not set Script and Language for it, so\\%

4859 you may consider defining a new family with \string\babelfont.\\%

4860 See the manual for further details about \string\babelfont.

4861 Reported}}

4862 {}}%

4863 \gdef\bbl@switchfont{%

4864 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

4865 \bbl@exp{% e.g., Arabic -> arabic

4866 \lowercase{\edef\\\bbl@tempa{\bbl@cl{sname}}}}%

4867 \bbl@foreach\bbl@font@fams{%

4868 \bbl@ifunset{bbl@##1dflt@\languagename}% (1) language?

4869 {\bbl@ifunset{bbl@##1dflt@*\bbl@tempa}% (2) from script?

4870 {\bbl@ifunset{bbl@##1dflt@}% 2=F - (3) from generic?

4871 {}% 123=F - nothing!

4872 {\bbl@exp{% 3=T - from generic

4873 \global\let\<bbl@##1dflt@\languagename>%

4874 \<bbl@##1dflt@>}}}%

4875 {\bbl@exp{% 2=T - from script

4876 \global\let\<bbl@##1dflt@\languagename>%

4877 \<bbl@##1dflt@*\bbl@tempa>}}}%

105

4878 {}}% 1=T - language, already defined

4879 \def\bbl@tempa{\bbl@nostdfont{}}%

4880 \bbl@foreach\bbl@font@fams{% don't gather with prev for

4881 \bbl@ifunset{bbl@##1dflt@\languagename}%

4882 {\bbl@cs{famrst@##1}%

4883 \global\bbl@csarg\let{famrst@##1}\relax}%

4884 {\bbl@exp{% order is relevant.

4885 \\\bbl@add\\\originalTeX{%

4886 \\\bbl@font@rst{\bbl@cl{##1dflt}}%

4887 \<##1default>\<##1family>{##1}}%

4888 \\\bbl@font@set\<bbl@##1dflt@\languagename>% the main part!

4889 \<##1default>\<##1family>}}}%

4890 \bbl@ifrestoring{}{\bbl@tempa}}%

The following is executed at the beginning of the aux file or the document to warn about fonts not

defined with \babelfont.

4891 \ifx\f@family\@undefined\else % if latex

4892 \ifcase\bbl@engine % if pdftex

4893 \let\bbl@ckeckstdfonts\relax

4894 \else

4895 \def\bbl@ckeckstdfonts{%

4896 \begingroup

4897 \global\let\bbl@ckeckstdfonts\relax

4898 \let\bbl@tempa\@empty

4899 \bbl@foreach\bbl@font@fams{%

4900 \bbl@ifunset{bbl@##1dflt@}%

4901 {\@nameuse{##1family}%

4902 \bbl@csarg\gdef{WFF@\f@family}{}% Flag

4903 \bbl@exp{\\\bbl@add\\\bbl@tempa{* \<##1family>= \f@family\\\\%

4904 \space\space\fontname\font\\\\}}%

4905 \bbl@csarg\xdef{##1dflt@}{\f@family}%

4906 \expandafter\xdef\csname ##1default\endcsname{\f@family}}%

4907 {}}%

4908 \ifx\bbl@tempa\@empty\else

4909 \bbl@infowarn{The following font families will use the default\\%

4910 settings for all or some languages:\\%

4911 \bbl@tempa

4912 There is nothing intrinsically wrong with it, but\\%

4913 'babel' will no set Script and Language, which could\\%

4914 be relevant in some languages. If your document uses\\%

4915 these families, consider redefining them with \string\babelfont.\\%

4916 Reported}%

4917 \fi

4918 \endgroup}

4919 \fi

4920 \fi

Now the macros defining the font with fontspec.

When there are repeated keys in fontspec, the last value wins. So, we just place the ini settings at

the beginning, and user settings will take precedence. We must deactivate temporarily

\bbl@mapselect because \selectfont is called internally when a font is defined.

For historical reasons, LATEX can select two different series (bx and b), for what is conceptually a

single one. This can lead to problems when a single family requires several fonts, depending on the

language, mainly because ‘substitutions’ with some combinations are not done consistently –

sometimes bx/sc is the correct font, but sometimes points to b/n, even if b/sc exists. So, some

substitutions are redefined (in a somewhat hackish way, by inspecting if the variant declaration

contains >ssub*).

4921 \def\bbl@font@set#1#2#3{% e.g., \bbl@rmdflt@lang \rmdefault \rmfamily

4922 \bbl@xin@{<>}{#1}%

4923 \ifin@

4924 \bbl@exp{\\\bbl@fontspec@set\\#1\expandafter\@gobbletwo#1\\#3}%

4925 \fi

4926 \bbl@exp{% 'Unprotected' macros return prev values

4927 \def\\#2{#1}% e.g., \rmdefault{\bbl@rmdflt@lang}

106

4928 \\\bbl@ifsamestring{#2}{\f@family}%

4929 {\\#3%

4930 \\\bbl@ifsamestring{\f@series}{\bfdefault}{\\\bfseries}{}%

4931 \let\\\bbl@tempa\relax}%

4932 {}}}

Loaded locally, which does its job, but very must be global. The problem is how. This actually

defines a font predeclared with \babelfont, making sure Script and Language names are defined.

If they are not, the corresponding data in the ini file is used. The font is actually set temporarily to get

the family name (\f@family). There is also a hack because by default some replacements related to

the bold series are sometimes assigned to the wrong font (see issue #92).

4933 \def\bbl@fontspec@set#1#2#3#4{% eg \bbl@rmdflt@lang fnt-opt fnt-nme \xxfamily

4934 \let\bbl@tempe\bbl@mapselect

4935 \edef\bbl@tempb{\bbl@stripslash#4/}% Catcodes hack (better pass it).

4936 \bbl@exp{\\\bbl@replace\\\bbl@tempb{\bbl@stripslash\family/}{}}%

4937 \let\bbl@mapselect\relax

4938 \let\bbl@temp@fam#4% e.g., '\rmfamily', to be restored below

4939 \let#4\@empty % Make sure \renewfontfamily is valid

4940 \bbl@set@renderer

4941 \bbl@exp{%

4942 \let\\\bbl@temp@pfam\<\bbl@stripslash#4\space>% e.g., '\rmfamily '

4943 \<keys_if_exist:nnF>{fontspec-opentype}{Script/\bbl@cl{sname}}%

4944 {\\\newfontscript{\bbl@cl{sname}}{\bbl@cl{sotf}}}%

4945 \<keys_if_exist:nnF>{fontspec-opentype}{Language/\bbl@cl{lname}}%

4946 {\\\newfontlanguage{\bbl@cl{lname}}{\bbl@cl{lotf}}}%

4947 \\\renewfontfamily\\#4%

4948 [\bbl@cl{lsys},% xetex removes unknown features :-(

4949 \ifcase\bbl@engine\or RawFeature={family=\bbl@tempb},\fi

4950 #2]}{#3}% i.e., \bbl@exp{..}{#3}

4951 \bbl@unset@renderer

4952 \begingroup

4953 #4%

4954 \xdef#1{\f@family}% e.g., \bbl@rmdflt@lang{FreeSerif(0)}

4955 \endgroup

4956 \bbl@xin@{\string>\string s\string s\string u\string b\string*}%

4957 {\expandafter\meaning\csname TU/#1/bx/sc\endcsname}%

4958 \ifin@

4959 \global\bbl@ccarg\let{TU/#1/bx/sc}{TU/#1/b/sc}%

4960 \fi

4961 \bbl@xin@{\string>\string s\string s\string u\string b\string*}%

4962 {\expandafter\meaning\csname TU/#1/bx/scit\endcsname}%

4963 \ifin@

4964 \global\bbl@ccarg\let{TU/#1/bx/scit}{TU/#1/b/scit}%

4965 \fi

4966 \let#4\bbl@temp@fam

4967 \bbl@exp{\let\<\bbl@stripslash#4\space>}\bbl@temp@pfam

4968 \let\bbl@mapselect\bbl@tempe}%

font@rst and famrst are only used when there is no global settings, to save and restore de

previous families. Not really necessary, but done for optimization.

4969 \def\bbl@font@rst#1#2#3#4{%

4970 \bbl@csarg\def{famrst@#4}{\bbl@font@set{#1}#2#3}}

The default font families. They are eurocentric, but the list can be expanded easily with

\babelfont.

4971 \def\bbl@font@fams{rm,sf,tt}

4972 〈〈/Font selection〉〉

10. Hooks for XeTeX and LuaTeX

10.1. XeTeX

Unfortunately, the current encoding cannot be retrieved and therefore it is reset always to utf8,

which seems a sensible default.

107

Now, the code.

4973 〈∗xetex〉
4974 \def\BabelStringsDefault{unicode}

4975 \let\xebbl@stop\relax

4976 \AddBabelHook{xetex}{encodedcommands}{%

4977 \def\bbl@tempa{#1}%

4978 \ifx\bbl@tempa\@empty

4979 \XeTeXinputencoding"bytes"%

4980 \else

4981 \XeTeXinputencoding"#1"%

4982 \fi

4983 \def\xebbl@stop{\XeTeXinputencoding"utf8"}}

4984 \AddBabelHook{xetex}{stopcommands}{%

4985 \xebbl@stop

4986 \let\xebbl@stop\relax}

4987 \def\bbl@input@classes{% Used in CJK intraspaces

4988 \input{load-unicode-xetex-classes.tex}%

4989 \let\bbl@input@classes\relax}

4990 \def\bbl@intraspace#1 #2 #3\@@{%

4991 \bbl@csarg\gdef{xeisp@\languagename}%

4992 {\XeTeXlinebreakskip #1em plus #2em minus #3em\relax}}

4993 \def\bbl@intrapenalty#1\@@{%

4994 \bbl@csarg\gdef{xeipn@\languagename}%

4995 {\XeTeXlinebreakpenalty #1\relax}}

4996 \def\bbl@provide@intraspace{%

4997 \bbl@xin@{/s}{/\bbl@cl{lnbrk}}%

4998 \ifin@\else\bbl@xin@{/c}{/\bbl@cl{lnbrk}}\fi

4999 \ifin@

5000 \bbl@ifunset{bbl@intsp@\languagename}{}%

5001 {\expandafter\ifx\csname bbl@intsp@\languagename\endcsname\@empty\else

5002 \ifx\bbl@KVP@intraspace\@nnil

5003 \bbl@exp{%

5004 \\\bbl@intraspace\bbl@cl{intsp}\\\@@}%

5005 \fi

5006 \ifx\bbl@KVP@intrapenalty\@nnil

5007 \bbl@intrapenalty0\@@

5008 \fi

5009 \fi

5010 \ifx\bbl@KVP@intraspace\@nnil\else % We may override the ini

5011 \expandafter\bbl@intraspace\bbl@KVP@intraspace\@@

5012 \fi

5013 \ifx\bbl@KVP@intrapenalty\@nnil\else

5014 \expandafter\bbl@intrapenalty\bbl@KVP@intrapenalty\@@

5015 \fi

5016 \bbl@exp{%

5017 \\\bbl@add\<extras\languagename>{%

5018 \XeTeXlinebreaklocale "\bbl@cl{tbcp}"%

5019 \<bbl@xeisp@\languagename>%

5020 \<bbl@xeipn@\languagename>}%

5021 \\\bbl@toglobal\<extras\languagename>%

5022 \\\bbl@add\<noextras\languagename>{%

5023 \XeTeXlinebreaklocale ""}%

5024 \\\bbl@toglobal\<noextras\languagename>}%

5025 \ifx\bbl@ispacesize\@undefined

5026 \gdef\bbl@ispacesize{\bbl@cl{xeisp}}%

5027 \ifx\AtBeginDocument\@notprerr

5028 \expandafter\@secondoftwo % to execute right now

5029 \fi

5030 \AtBeginDocument{\bbl@patchfont{\bbl@ispacesize}}%

5031 \fi}%

5032 \fi}

5033 \ifx\DisableBabelHook\@undefined\endinput\fi

5034 \let\bbl@set@renderer\relax

108

5035 \let\bbl@unset@renderer\relax

5036 <@Font selection@>

5037 \def\bbl@provide@extra#1{}

Hack for unhyphenated line breaking. See \bbl@provide@lsys in the common code.

5038 \def\bbl@xenohyph@d{%

5039 \bbl@ifset{bbl@prehc@\languagename}%

5040 {\ifnum\hyphenchar\font=\defaulthyphenchar

5041 \iffontchar\font\bbl@cl{prehc}\relax

5042 \hyphenchar\font\bbl@cl{prehc}\relax

5043 \else\iffontchar\font"200B

5044 \hyphenchar\font"200B

5045 \else

5046 \bbl@warning

5047 {Neither 0 nor ZERO WIDTH SPACE are available\\%

5048 in the current font, and therefore the hyphen\\%

5049 will be printed. Try changing the fontspec's\\%

5050 'HyphenChar' to another value, but be aware\\%

5051 this setting is not safe (see the manual).\\%

5052 Reported}%

5053 \hyphenchar\font\defaulthyphenchar

5054 \fi\fi

5055 \fi}%

5056 {\hyphenchar\font\defaulthyphenchar}}

10.2. Support for interchar

xetex reserves some values for CJK (although they are not set in xelatex), so we make sure they are

skipped. Define some user names for the global classes, too.

5057 \ifnum\xe@alloc@intercharclass<\thr@@

5058 \xe@alloc@intercharclass\thr@@

5059 \fi

5060 \chardef\bbl@xeclass@default@=\z@

5061 \chardef\bbl@xeclass@cjkideogram@=\@ne

5062 \chardef\bbl@xeclass@cjkleftpunctuation@=\tw@

5063 \chardef\bbl@xeclass@cjkrightpunctuation@=\thr@@

5064 \chardef\bbl@xeclass@boundary@=4095

5065 \chardef\bbl@xeclass@ignore@=4096

The machinery is activated with a hook (enabled only if actually used). Here \bbl@tempc is pre-set

with \bbl@usingxeclass, defined below. The standard mechanism based on \originalTeX to save,

set and restore values is used. \count@ stores the previous char to be set, except at the beginning (0)

and after \bbl@upto, which is the previous char negated, as a flag to mark a range.

5066 \AddBabelHook{babel-interchar}{beforeextras}{%

5067 \@nameuse{bbl@xechars@\languagename}}

5068 \DisableBabelHook{babel-interchar}

5069 \protected\def\bbl@charclass#1{%

5070 \ifnum\count@<\z@

5071 \count@-\count@

5072 \loop

5073 \bbl@exp{%

5074 \\\babel@savevariable{\XeTeXcharclass`\Uchar\count@}}%

5075 \XeTeXcharclass\count@ \bbl@tempc

5076 \ifnum\count@<`#1\relax

5077 \advance\count@\@ne

5078 \repeat

5079 \else

5080 \babel@savevariable{\XeTeXcharclass`#1}%

5081 \XeTeXcharclass`#1 \bbl@tempc

5082 \fi

5083 \count@`#1\relax}

Now the two user macros. Char classes are declared implicitly, and then the macro to be executed

at the babel-interchar hook is created. The list of chars to be handled by the hook defined above

109

has internally the form \bbl@usingxeclass\bbl@xeclass@punct@english\bbl@charclass{.}

\bbl@charclass{,} (etc.), where \bbl@usingxeclass stores the class to be applied to the

subsequent characters. The \ifcat part deals with the alternative way to enter characters as macros

(e.g., \}). As a special case, hyphens are stored as \bbl@upto, to deal with ranges.

5084 \newcommand\bbl@ifinterchar[1]{%

5085 \let\bbl@tempa\@gobble % Assume to ignore

5086 \edef\bbl@tempb{\zap@space#1 \@empty}%

5087 \ifx\bbl@KVP@interchar\@nnil\else

5088 \bbl@replace\bbl@KVP@interchar{ }{,}%

5089 \bbl@foreach\bbl@tempb{%

5090 \bbl@xin@{,##1,}{,\bbl@KVP@interchar,}%

5091 \ifin@

5092 \let\bbl@tempa\@firstofone

5093 \fi}%

5094 \fi

5095 \bbl@tempa}

5096 \newcommand\IfBabelIntercharT[2]{%

5097 \bbl@carg\bbl@add{bbl@icsave@\CurrentOption}{\bbl@ifinterchar{#1}{#2}}}%

5098 \newcommand\babelcharclass[3]{%

5099 \EnableBabelHook{babel-interchar}%

5100 \bbl@csarg\newXeTeXintercharclass{xeclass@#2@#1}%

5101 \def\bbl@tempb##1{%

5102 \ifx##1\@empty\else

5103 \ifx##1-%

5104 \bbl@upto

5105 \else

5106 \bbl@charclass{%

5107 \ifcat\noexpand##1\relax\bbl@stripslash##1\else\string##1\fi}%

5108 \fi

5109 \expandafter\bbl@tempb

5110 \fi}%

5111 \bbl@ifunset{bbl@xechars@#1}%

5112 {\toks@{%

5113 \babel@savevariable\XeTeXinterchartokenstate

5114 \XeTeXinterchartokenstate\@ne

5115 }}%

5116 {\toks@\expandafter\expandafter\expandafter{%

5117 \csname bbl@xechars@#1\endcsname}}%

5118 \bbl@csarg\edef{xechars@#1}{%

5119 \the\toks@

5120 \bbl@usingxeclass\csname bbl@xeclass@#2@#1\endcsname

5121 \bbl@tempb#3\@empty}}

5122 \protected\def\bbl@usingxeclass#1{\count@\z@ \let\bbl@tempc#1}

5123 \protected\def\bbl@upto{%

5124 \ifnum\count@>\z@

5125 \advance\count@\@ne

5126 \count@-\count@

5127 \else\ifnum\count@=\z@

5128 \bbl@charclass{-}%

5129 \else

5130 \bbl@error{double-hyphens-class}{}{}{}%

5131 \fi\fi}

And finally, the command with the code to be inserted. If the language doesn’t define a class, then

use the global one, as defined above. For the definition there is a intermediate macro, which can be

‘disabled’ with \bbl@ic@〈label〉@〈language〉.

5132 \def\bbl@ignoreinterchar{%

5133 \ifnum\language=\l@nohyphenation

5134 \expandafter\@gobble

5135 \else

5136 \expandafter\@firstofone

5137 \fi}

5138 \newcommand\babelinterchar[5][]{%

110

5139 \let\bbl@kv@label\@empty

5140 \bbl@forkv{#1}{\bbl@csarg\edef{kv@##1}{##2}}%

5141 \@namedef{\zap@space bbl@xeinter@\bbl@kv@label @#3@#4@#2 \@empty}%

5142 {\bbl@ignoreinterchar{#5}}%

5143 \bbl@csarg\let{ic@\bbl@kv@label @#2}\@firstofone

5144 \bbl@exp{\\\bbl@for\\\bbl@tempa{\zap@space#3 \@empty}}{%

5145 \bbl@exp{\\\bbl@for\\\bbl@tempb{\zap@space#4 \@empty}}{%

5146 \XeTeXinterchartoks

5147 \@nameuse{bbl@xeclass@\bbl@tempa @%

5148 \bbl@ifunset{bbl@xeclass@\bbl@tempa @#2}{}{#2}} %

5149 \@nameuse{bbl@xeclass@\bbl@tempb @%

5150 \bbl@ifunset{bbl@xeclass@\bbl@tempb @#2}{}{#2}} %

5151 = \expandafter{%

5152 \csname bbl@ic@\bbl@kv@label @#2\expandafter\endcsname

5153 \csname\zap@space bbl@xeinter@\bbl@kv@label

5154 @#3@#4@#2 \@empty\endcsname}}}}

5155 \DeclareRobustCommand\enablelocaleinterchar[1]{%

5156 \bbl@ifunset{bbl@ic@#1@\languagename}%

5157 {\bbl@error{unknown-interchar}{#1}{}{}}%

5158 {\bbl@csarg\let{ic@#1@\languagename}\@firstofone}}

5159 \DeclareRobustCommand\disablelocaleinterchar[1]{%

5160 \bbl@ifunset{bbl@ic@#1@\languagename}%

5161 {\bbl@error{unknown-interchar-b}{#1}{}{}}%

5162 {\bbl@csarg\let{ic@#1@\languagename}\@gobble}}

5163 〈/xetex〉

10.3. Layout

Note elements like headlines and margins can be modified easily with packages like fancyhdr,

typearea or titleps, and geometry.

\bbl@startskip and \bbl@endskip are available to package authors. Thanks to the TEX expansion

mechanism the following constructs are valid: \adim\bbl@startskip,

\advance\bbl@startskip\adim, \bbl@startskip\adim.

Consider txtbabel as a shorthand for tex–xet babel, which is the bidi model in both pdftex and

xetex.

5164 〈∗xetex | texxet〉
5165 \providecommand\bbl@provide@intraspace{}

5166 \bbl@trace{Redefinitions for bidi layout}

Finish here if there in no layout.

5167 \ifx\bbl@opt@layout\@nnil\else % if layout=..

5168 \IfBabelLayout{nopars}

5169 {}

5170 {\edef\bbl@opt@layout{\bbl@opt@layout.pars.}}%

5171 \def\bbl@startskip{\ifcase\bbl@thepardir\leftskip\else\rightskip\fi}

5172 \def\bbl@endskip{\ifcase\bbl@thepardir\rightskip\else\leftskip\fi}

5173 \ifnum\bbl@bidimode>\z@

5174 \IfBabelLayout{pars}

5175 {\def\@hangfrom#1{%

5176 \setbox\@tempboxa\hbox{{#1}}%

5177 \hangindent\ifcase\bbl@thepardir\wd\@tempboxa\else-\wd\@tempboxa\fi

5178 \noindent\box\@tempboxa}

5179 \def\raggedright{%

5180 \let\\\@centercr

5181 \bbl@startskip\z@skip

5182 \@rightskip\@flushglue

5183 \bbl@endskip\@rightskip

5184 \parindent\z@

5185 \parfillskip\bbl@startskip}

5186 \def\raggedleft{%

5187 \let\\\@centercr

5188 \bbl@startskip\@flushglue

5189 \bbl@endskip\z@skip

111

5190 \parindent\z@

5191 \parfillskip\bbl@endskip}}

5192 {}

5193 \fi

5194 \IfBabelLayout{lists}

5195 {\bbl@sreplace\list

5196 {\@totalleftmargin\leftmargin}{\@totalleftmargin\bbl@listleftmargin}%

5197 \def\bbl@listleftmargin{%

5198 \ifcase\bbl@thepardir\leftmargin\else\rightmargin\fi}%

5199 \ifcase\bbl@engine

5200 \def\labelenumii{)\theenumii(}% pdftex doesn't reverse ()

5201 \def\p@enumiii{\p@enumii)\theenumii(}%

5202 \fi

5203 \bbl@sreplace\@verbatim

5204 {\leftskip\@totalleftmargin}%

5205 {\bbl@startskip\textwidth

5206 \advance\bbl@startskip-\linewidth}%

5207 \bbl@sreplace\@verbatim

5208 {\rightskip\z@skip}%

5209 {\bbl@endskip\z@skip}}%

5210 {}

5211 \IfBabelLayout{contents}

5212 {\bbl@sreplace\@dottedtocline{\leftskip}{\bbl@startskip}%

5213 \bbl@sreplace\@dottedtocline{\rightskip}{\bbl@endskip}}

5214 {}

5215 \IfBabelLayout{columns}

5216 {\bbl@sreplace\@outputdblcol{\hb@xt@\textwidth}{\bbl@outputhbox}%

5217 \def\bbl@outputhbox#1{%

5218 \hb@xt@\textwidth{%

5219 \hskip\columnwidth

5220 \hfil

5221 {\normalcolor\vrule \@width\columnseprule}%

5222 \hfil

5223 \hb@xt@\columnwidth{\box\@leftcolumn \hss}%

5224 \hskip-\textwidth

5225 \hb@xt@\columnwidth{\box\@outputbox \hss}%

5226 \hskip\columnsep

5227 \hskip\columnwidth}}}%

5228 {}

Implicitly reverses sectioning labels in bidi=basic, because the full stop is not in contact with L

numbers any more. I think there must be a better way.

5229 \IfBabelLayout{counters*}%

5230 {\bbl@add\bbl@opt@layout{.counters.}%

5231 \AddToHook{shipout/before}{%

5232 \let\bbl@tempa\babelsublr

5233 \let\babelsublr\@firstofone

5234 \let\bbl@save@thepage\thepage

5235 \protected@edef\thepage{\thepage}%

5236 \let\babelsublr\bbl@tempa}%

5237 \AddToHook{shipout/after}{%

5238 \let\thepage\bbl@save@thepage}}{}

5239 \IfBabelLayout{counters}%

5240 {\let\bbl@latinarabic=\@arabic

5241 \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%

5242 \let\bbl@asciiroman=\@roman

5243 \def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%

5244 \let\bbl@asciiRoman=\@Roman

5245 \def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}}{}

5246 \fi % end if layout

5247 〈/xetex | texxet〉

112

10.4. 8-bit TeX

Which start just above, because some code is shared with xetex. Now, 8-bit specific stuff. If just one

encoding has been declared, then assume no switching is necessary (1).

5248 〈∗texxet〉
5249 \def\bbl@provide@extra#1{%

5250 % == auto-select encoding ==

5251 \ifx\bbl@encoding@select@off\@empty\else

5252 \bbl@ifunset{bbl@encoding@#1}%

5253 {\def\@elt##1{,##1,}%

5254 \edef\bbl@tempe{\expandafter\@gobbletwo\@fontenc@load@list}%

5255 \count@\z@

5256 \bbl@foreach\bbl@tempe{%

5257 \def\bbl@tempd{##1}% Save last declared

5258 \advance\count@\@ne}%

5259 \ifnum\count@>\@ne % (1)

5260 \getlocaleproperty*\bbl@tempa{#1}{identification/encodings}%

5261 \ifx\bbl@tempa\relax \let\bbl@tempa\@empty \fi

5262 \bbl@replace\bbl@tempa{ }{,}%

5263 \global\bbl@csarg\let{encoding@#1}\@empty

5264 \bbl@xin@{,\bbl@tempd,}{,\bbl@tempa,}%

5265 \ifin@\else % if main encoding included in ini, do nothing

5266 \let\bbl@tempb\relax

5267 \bbl@foreach\bbl@tempa{%

5268 \ifx\bbl@tempb\relax

5269 \bbl@xin@{,##1,}{,\bbl@tempe,}%

5270 \ifin@\def\bbl@tempb{##1}\fi

5271 \fi}%

5272 \ifx\bbl@tempb\relax\else

5273 \bbl@exp{%

5274 \global\<bbl@add>\<bbl@preextras@#1>{\<bbl@encoding@#1>}%

5275 \gdef\<bbl@encoding@#1>{%

5276 \\\babel@save\\\f@encoding

5277 \\\bbl@add\\\originalTeX{\\\selectfont}%

5278 \\\fontencoding{\bbl@tempb}%

5279 \\\selectfont}}%

5280 \fi

5281 \fi

5282 \fi}%

5283 {}%

5284 \fi}

5285 〈/texxet〉

10.5. LuaTeX

The loader for luatex is based solely on language.dat, which is read on the fly. The code shouldn’t be

executed when the format is build, so we check if \AddBabelHook is defined. Then comes a modified

version of the loader in hyphen.cfg (without the hyphenmins stuff, which is under the direct control

of babel).

The names \l@〈language〉 are defined and take some value from the beginning because all ldf files

assume this for the corresponding language to be considered valid, but patterns are not loaded

(except the first one). This is done later, when the language is first selected (which usually means

when the ldf finishes). If a language has been loaded, \bbl@hyphendata@〈num〉 exists (with the

names of the files read).

The default setup preloads the first language into the format. This is intended mainly for ‘english’,

so that it’s available without further intervention from the user. To avoid duplicating it, the following

rule applies: if the “0th” language and the first language in language.dat have the same name then

just ignore the latter. If there are new synonymous, the are added, but note if the language patterns

have not been preloaded they won’t at run time.

Other preloaded languages could be read twice, if they have been preloaded into the format. This is

not optimal, but it shouldn’t happen very often – with luatex patterns are best loaded when the

document is typeset, and the “0th” language is preloaded just for backwards compatibility.

113

As of 1.1b, lua(e)tex is taken into account. Formerly, loading of patterns on the fly didn’t work in

this format, but with the new loader it does. Unfortunately, the format is not based on babel, and data

could be duplicated, because languages are reassigned above those in the format (nothing serious,

anyway). Note even with this format language.dat is used (under the principle of a single source),

instead of language.def.

Of course, there is room for improvements, like tools to read and reassign languages, which would

require modifying the language list, and better error handling.

We need catcode tables, but no format (targeted by babel) provide a command to allocate them

(although there are packages like ctablestack). FIX - This isn’t true anymore. For the moment, a

dangerous approach is used - just allocate a high random number and cross the fingers. To

complicate things, etex.sty changes the way languages are allocated.

This files is read at three places: (1) when plain.def, babel.sty starts, to read the list of available

languages from language.dat (for the base option); (2) at hyphen.cfg, to modify some macros; (3) in

the middle of plain.def and babel.sty, by babel.def, with the commands and other definitions for

luatex (e.g., \babelpatterns).

5286 〈∗luatex〉
5287 \directlua{ Babel = Babel or {} } % DL2

5288 \ifx\AddBabelHook\@undefined % When plain.def, babel.sty starts

5289 \bbl@trace{Read language.dat}

5290 \ifx\bbl@readstream\@undefined

5291 \csname newread\endcsname\bbl@readstream

5292 \fi

5293 \begingroup

5294 \toks@{}

5295 \count@\z@ % 0=start, 1=0th, 2=normal

5296 \def\bbl@process@line#1#2 #3 #4 {%

5297 \ifx=#1%

5298 \bbl@process@synonym{#2}%

5299 \else

5300 \bbl@process@language{#1#2}{#3}{#4}%

5301 \fi

5302 \ignorespaces}

5303 \def\bbl@manylang{%

5304 \ifnum\bbl@last>\@ne

5305 \bbl@info{Non-standard hyphenation setup}%

5306 \fi

5307 \let\bbl@manylang\relax}

5308 \def\bbl@process@language#1#2#3{%

5309 \ifcase\count@

5310 \@ifundefined{zth@#1}{\count@\tw@}{\count@\@ne}%

5311 \or

5312 \count@\tw@

5313 \fi

5314 \ifnum\count@=\tw@

5315 \expandafter\addlanguage\csname l@#1\endcsname

5316 \language\allocationnumber

5317 \chardef\bbl@last\allocationnumber

5318 \bbl@manylang

5319 \let\bbl@elt\relax

5320 \xdef\bbl@languages{%

5321 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{#3}}%

5322 \fi

5323 \the\toks@

5324 \toks@{}}

5325 \def\bbl@process@synonym@aux#1#2{%

5326 \global\expandafter\chardef\csname l@#1\endcsname#2\relax

5327 \let\bbl@elt\relax

5328 \xdef\bbl@languages{%

5329 \bbl@languages\bbl@elt{#1}{#2}{}{}}}%

5330 \def\bbl@process@synonym#1{%

5331 \ifcase\count@

5332 \toks@\expandafter{\the\toks@\relax\bbl@process@synonym{#1}}%

5333 \or

114

5334 \@ifundefined{zth@#1}{\bbl@process@synonym@aux{#1}{0}}{}%

5335 \else

5336 \bbl@process@synonym@aux{#1}{\the\bbl@last}%

5337 \fi}

5338 \ifx\bbl@languages\@undefined % Just a (sensible?) guess

5339 \chardef\l@english\z@

5340 \chardef\l@USenglish\z@

5341 \chardef\bbl@last\z@

5342 \global\@namedef{bbl@hyphendata@0}{{hyphen.tex}{}}

5343 \gdef\bbl@languages{%

5344 \bbl@elt{english}{0}{hyphen.tex}{}%

5345 \bbl@elt{USenglish}{0}{}{}}

5346 \else

5347 \global\let\bbl@languages@format\bbl@languages

5348 \def\bbl@elt#1#2#3#4{% Remove all except language 0

5349 \ifnum#2>\z@\else

5350 \noexpand\bbl@elt{#1}{#2}{#3}{#4}%

5351 \fi}%

5352 \xdef\bbl@languages{\bbl@languages}%

5353 \fi

5354 \def\bbl@elt#1#2#3#4{\@namedef{zth@#1}{}} % Define flags

5355 \bbl@languages

5356 \openin\bbl@readstream=language.dat

5357 \ifeof\bbl@readstream

5358 \bbl@warning{I couldn't find language.dat. No additional\\%

5359 patterns loaded. Reported}%

5360 \else

5361 \loop

5362 \endlinechar\m@ne

5363 \read\bbl@readstream to \bbl@line

5364 \endlinechar`\^^M

5365 \if T\ifeof\bbl@readstream F\fi T\relax

5366 \ifx\bbl@line\@empty\else

5367 \edef\bbl@line{\bbl@line\space\space\space}%

5368 \expandafter\bbl@process@line\bbl@line\relax

5369 \fi

5370 \repeat

5371 \fi

5372 \closein\bbl@readstream

5373 \endgroup

5374 \bbl@trace{Macros for reading patterns files}

5375 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}

5376 \ifx\babelcatcodetablenum\@undefined

5377 \ifx\newcatcodetable\@undefined

5378 \def\babelcatcodetablenum{5211}

5379 \def\bbl@pattcodes{\numexpr\babelcatcodetablenum+1\relax}

5380 \else

5381 \newcatcodetable\babelcatcodetablenum

5382 \newcatcodetable\bbl@pattcodes

5383 \fi

5384 \else

5385 \def\bbl@pattcodes{\numexpr\babelcatcodetablenum+1\relax}

5386 \fi

5387 \def\bbl@luapatterns#1#2{%

5388 \bbl@get@enc#1::\@@@

5389 \setbox\z@\hbox\bgroup

5390 \begingroup

5391 \savecatcodetable\babelcatcodetablenum\relax

5392 \initcatcodetable\bbl@pattcodes\relax

5393 \catcodetable\bbl@pattcodes\relax

5394 \catcode`\#=6 \catcode`\$=3 \catcode`\&=4 \catcode`\^=7

5395 \catcode`_=8 \catcode`\{=1 \catcode`\}=2 \catcode`\~=13

5396 \catcode`\@=11 \catcode`\^^I=10 \catcode`\^^J=12

115

5397 \catcode`\<=12 \catcode`\>=12 \catcode`*=12 \catcode`\.=12

5398 \catcode`\-=12 \catcode`\/=12 \catcode`\[=12 \catcode`\]=12

5399 \catcode`\`=12 \catcode`\'=12 \catcode`\"=12

5400 \input #1\relax

5401 \catcodetable\babelcatcodetablenum\relax

5402 \endgroup

5403 \def\bbl@tempa{#2}%

5404 \ifx\bbl@tempa\@empty\else

5405 \input #2\relax

5406 \fi

5407 \egroup}%

5408 \def\bbl@patterns@lua#1{%

5409 \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax

5410 \csname l@#1\endcsname

5411 \edef\bbl@tempa{#1}%

5412 \else

5413 \csname l@#1:\f@encoding\endcsname

5414 \edef\bbl@tempa{#1:\f@encoding}%

5415 \fi\relax

5416 \@namedef{lu@texhyphen@loaded@\the\language}{}% Temp

5417 \@ifundefined{bbl@hyphendata@\the\language}%

5418 {\def\bbl@elt##1##2##3##4{%

5419 \ifnum##2=\csname l@\bbl@tempa\endcsname % #2=spanish, dutch:OT1...

5420 \def\bbl@tempb{##3}%

5421 \ifx\bbl@tempb\@empty\else % if not a synonymous

5422 \def\bbl@tempc{{##3}{##4}}%

5423 \fi

5424 \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%

5425 \fi}%

5426 \bbl@languages

5427 \@ifundefined{bbl@hyphendata@\the\language}%

5428 {\bbl@info{No hyphenation patterns were set for\\%

5429 language '\bbl@tempa'. Reported}}%

5430 {\expandafter\expandafter\expandafter\bbl@luapatterns

5431 \csname bbl@hyphendata@\the\language\endcsname}}{}}

5432 \endinput\fi

Here ends \ifx\AddBabelHook\@undefined. A few lines are only read by hyphen.cfg.

5433 \ifx\DisableBabelHook\@undefined

5434 \AddBabelHook{luatex}{everylanguage}{%

5435 \def\process@language##1##2##3{%

5436 \def\process@line####1####2 ####3 ####4 {}}}

5437 \AddBabelHook{luatex}{loadpatterns}{%

5438 \input #1\relax

5439 \expandafter\gdef\csname bbl@hyphendata@\the\language\endcsname

5440 {{#1}{}}}

5441 \AddBabelHook{luatex}{loadexceptions}{%

5442 \input #1\relax

5443 \def\bbl@tempb##1##2{{##1}{#1}}%

5444 \expandafter\xdef\csname bbl@hyphendata@\the\language\endcsname

5445 {\expandafter\expandafter\expandafter\bbl@tempb

5446 \csname bbl@hyphendata@\the\language\endcsname}}

5447 \endinput\fi

Here stops reading code for hyphen.cfg. The following is read the 2nd time it’s loaded. First, global

declarations for lua.

5448 \begingroup

5449 \catcode`\%=12

5450 \catcode`\'=12

5451 \catcode`\"=12

5452 \catcode`\:=12

5453 \directlua{

5454 Babel.locale_props = Babel.locale_props or {}

5455 function Babel.lua_error(e, a)

116

5456 tex.print([[\noexpand\csname bbl@error\endcsname{]] ..

5457 e .. '}{' .. (a or '') .. '}{}{}')

5458 end

5459

5460 function Babel.bytes(line)

5461 return line:gsub("(.)",

5462 function (chr) return unicode.utf8.char(string.byte(chr)) end)

5463 end

5464

5465 function Babel.priority_in_callback(name,description)

5466 for i,v in ipairs(luatexbase.callback_descriptions(name)) do

5467 if v == description then return i end

5468 end

5469 return false

5470 end

5471

5472 function Babel.begin_process_input()

5473 if luatexbase and luatexbase.add_to_callback then

5474 luatexbase.add_to_callback('process_input_buffer',

5475 Babel.bytes,'Babel.bytes')

5476 else

5477 Babel.callback = callback.find('process_input_buffer')

5478 callback.register('process_input_buffer',Babel.bytes)

5479 end

5480 end

5481 function Babel.end_process_input ()

5482 if luatexbase and luatexbase.remove_from_callback then

5483 luatexbase.remove_from_callback('process_input_buffer','Babel.bytes')

5484 else

5485 callback.register('process_input_buffer',Babel.callback)

5486 end

5487 end

5488

5489 function Babel.str_to_nodes(fn, matches, base)

5490 local n, head, last

5491 if fn == nil then return nil end

5492 for s in string.utfvalues(fn(matches)) do

5493 if base.id == 7 then

5494 base = base.replace

5495 end

5496 n = node.copy(base)

5497 n.char = s

5498 if not head then

5499 head = n

5500 else

5501 last.next = n

5502 end

5503 last = n

5504 end

5505 return head

5506 end

5507

5508 Babel.linebreaking = Babel.linebreaking or {}

5509 Babel.linebreaking.before = {}

5510 Babel.linebreaking.after = {}

5511 Babel.locale = {}

5512 function Babel.linebreaking.add_before(func, pos)

5513 tex.print([[\noexpand\csname bbl@luahyphenate\endcsname]])

5514 if pos == nil then

5515 table.insert(Babel.linebreaking.before, func)

5516 else

5517 table.insert(Babel.linebreaking.before, pos, func)

5518 end

117

5519 end

5520 function Babel.linebreaking.add_after(func)

5521 tex.print([[\noexpand\csname bbl@luahyphenate\endcsname]])

5522 table.insert(Babel.linebreaking.after, func)

5523 end

5524

5525 function Babel.addpatterns(pp, lg)

5526 local lg = lang.new(lg)

5527 local pats = lang.patterns(lg) or ''

5528 lang.clear_patterns(lg)

5529 for p in pp:gmatch('[^%s]+') do

5530 ss = ''

5531 for i in string.utfcharacters(p:gsub('%d', '')) do

5532 ss = ss .. '%d?' .. i

5533 end

5534 ss = ss:gsub('^%%d%?%.', '%%.') .. '%d?'

5535 ss = ss:gsub('%.%%d%?$', '%%.')

5536 pats, n = pats:gsub('%s' .. ss .. '%s', ' ' .. p .. ' ')

5537 if n == 0 then

5538 tex.sprint(

5539 [[\string\csname\space bbl@info\endcsname{New pattern:]]

5540 .. p .. [[}]])

5541 pats = pats .. ' ' .. p

5542 else

5543 tex.sprint(

5544 [[\string\csname\space bbl@info\endcsname{Renew pattern:]]

5545 .. p .. [[}]])

5546 end

5547 end

5548 lang.patterns(lg, pats)

5549 end

5550

5551 Babel.characters = Babel.characters or {}

5552 Babel.ranges = Babel.ranges or {}

5553 function Babel.hlist_has_bidi(head)

5554 local has_bidi = false

5555 local ranges = Babel.ranges

5556 for item in node.traverse(head) do

5557 if item.id == node.id'glyph' then

5558 local itemchar = item.char

5559 local chardata = Babel.characters[itemchar]

5560 local dir = chardata and chardata.d or nil

5561 if not dir then

5562 for nn, et in ipairs(ranges) do

5563 if itemchar < et[1] then

5564 break

5565 elseif itemchar <= et[2] then

5566 dir = et[3]

5567 break

5568 end

5569 end

5570 end

5571 if dir and (dir == 'al' or dir == 'r') then

5572 has_bidi = true

5573 end

5574 end

5575 end

5576 return has_bidi

5577 end

5578 function Babel.set_chranges_b (script, chrng)

5579 if chrng == '' then return end

5580 texio.write('Replacing ' .. script .. ' script ranges')

5581 Babel.script_blocks[script] = {}

118

5582 for s, e in string.gmatch(chrng..' ', '(.-)%.%.(.-)%s') do

5583 table.insert(

5584 Babel.script_blocks[script], {tonumber(s,16), tonumber(e,16)})

5585 end

5586 end

5587

5588 function Babel.discard_sublr(str)

5589 if str:find([[\string\indexentry]]) and

5590 str:find([[\string\babelsublr]]) then

5591 str = str:gsub([[\string\babelsublr%s*(%b{})]],

5592 function(m) return m:sub(2,-2) end)

5593 end

5594 return str

5595 end

5596 }

5597 \endgroup

5598 \ifx\newattribute\@undefined\else % Test for plain

5599 \newattribute\bbl@attr@locale % DL4

5600 \directlua{ Babel.attr_locale = luatexbase.registernumber'bbl@attr@locale' }

5601 \AddBabelHook{luatex}{beforeextras}{%

5602 \setattribute\bbl@attr@locale\localeid}

5603 \fi

5604 %

5605 \def\BabelStringsDefault{unicode}

5606 \let\luabbl@stop\relax

5607 \AddBabelHook{luatex}{encodedcommands}{%

5608 \def\bbl@tempa{utf8}\def\bbl@tempb{#1}%

5609 \ifx\bbl@tempa\bbl@tempb\else

5610 \directlua{Babel.begin_process_input()}%

5611 \def\luabbl@stop{%

5612 \directlua{Babel.end_process_input()}}%

5613 \fi}%

5614 \AddBabelHook{luatex}{stopcommands}{%

5615 \luabbl@stop

5616 \let\luabbl@stop\relax}

5617 %

5618 \AddBabelHook{luatex}{patterns}{%

5619 \@ifundefined{bbl@hyphendata@\the\language}%

5620 {\def\bbl@elt##1##2##3##4{%

5621 \ifnum##2=\csname l@#2\endcsname % #2=spanish, dutch:OT1...

5622 \def\bbl@tempb{##3}%

5623 \ifx\bbl@tempb\@empty\else % if not a synonymous

5624 \def\bbl@tempc{{##3}{##4}}%

5625 \fi

5626 \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%

5627 \fi}%

5628 \bbl@languages

5629 \@ifundefined{bbl@hyphendata@\the\language}%

5630 {\bbl@info{No hyphenation patterns were set for\\%

5631 language '#2'. Reported}}%

5632 {\expandafter\expandafter\expandafter\bbl@luapatterns

5633 \csname bbl@hyphendata@\the\language\endcsname}}{}%

5634 \@ifundefined{bbl@patterns@}{}{%

5635 \begingroup

5636 \bbl@xin@{,\number\language,}{,\bbl@pttnlist}%

5637 \ifin@\else

5638 \ifx\bbl@patterns@\@empty\else

5639 \directlua{ Babel.addpatterns(

5640 [[\bbl@patterns@]], \number\language) }%

5641 \fi

5642 \@ifundefined{bbl@patterns@#1}%

5643 \@empty

5644 {\directlua{ Babel.addpatterns(

119

5645 [[\space\csname bbl@patterns@#1\endcsname]],

5646 \number\language) }}%

5647 \xdef\bbl@pttnlist{\bbl@pttnlist\number\language,}%

5648 \fi

5649 \endgroup}%

5650 \bbl@exp{%

5651 \bbl@ifunset{bbl@prehc@\languagename}{}%

5652 {\\\bbl@ifblank{\bbl@cs{prehc@\languagename}}{}%

5653 {\prehyphenchar=\bbl@cl{prehc}\relax}}}}

\babelpatterns This macro adds patterns. Two macros are used to store them: \bbl@patterns@ for

the global ones and \bbl@patterns@〈language〉 for language ones. We make sure there is a space

between words when multiple commands are used.

5654 \@onlypreamble\babelpatterns

5655 \AtEndOfPackage{%

5656 \newcommand\babelpatterns[2][\@empty]{%

5657 \ifx\bbl@patterns@\relax

5658 \let\bbl@patterns@\@empty

5659 \fi

5660 \ifx\bbl@pttnlist\@empty\else

5661 \bbl@warning{%

5662 You must not intermingle \string\selectlanguage\space and\\%

5663 \string\babelpatterns\space or some patterns will not\\%

5664 be taken into account. Reported}%

5665 \fi

5666 \ifx\@empty#1%

5667 \protected@edef\bbl@patterns@{\bbl@patterns@\space#2}%

5668 \else

5669 \edef\bbl@tempb{\zap@space#1 \@empty}%

5670 \bbl@for\bbl@tempa\bbl@tempb{%

5671 \bbl@fixname\bbl@tempa

5672 \bbl@iflanguage\bbl@tempa{%

5673 \bbl@csarg\protected@edef{patterns@\bbl@tempa}{%

5674 \@ifundefined{bbl@patterns@\bbl@tempa}%

5675 \@empty

5676 {\csname bbl@patterns@\bbl@tempa\endcsname\space}%

5677 #2}}}%

5678 \fi}}

10.6. Southeast Asian scripts

First, some general code for line breaking, used by \babelposthyphenation.

Replace regular (i.e., implicit) discretionaries by spaceskips, based on the previous glyph (which I

think makes sense, because the hyphen and the previous char go always together). Other

discretionaries are not touched. See Unicode UAX 14.

5679 \def\bbl@intraspace#1 #2 #3\@@{%

5680 \directlua{

5681 Babel.intraspaces = Babel.intraspaces or {}

5682 Babel.intraspaces['\csname bbl@sbcp@\languagename\endcsname'] = %

5683 {b = #1, p = #2, m = #3}

5684 Babel.locale_props[\the\localeid].intraspace = %

5685 {b = #1, p = #2, m = #3}

5686 }}

5687 \def\bbl@intrapenalty#1\@@{%

5688 \directlua{

5689 Babel.intrapenalties = Babel.intrapenalties or {}

5690 Babel.intrapenalties['\csname bbl@sbcp@\languagename\endcsname'] = #1

5691 Babel.locale_props[\the\localeid].intrapenalty = #1

5692 }}

5693 \begingroup

5694 \catcode`\%=12

5695 \catcode`\&=14

120

5696 \catcode`\'=12

5697 \catcode`\~=12

5698 \gdef\bbl@seaintraspace{&

5699 \let\bbl@seaintraspace\relax

5700 \directlua{

5701 Babel.sea_enabled = true

5702 Babel.sea_ranges = Babel.sea_ranges or {}

5703 function Babel.set_chranges (script, chrng)

5704 local c = 0

5705 for s, e in string.gmatch(chrng..' ', '(.-)%.%.(.-)%s') do

5706 Babel.sea_ranges[script..c]={tonumber(s,16), tonumber(e,16)}

5707 c = c + 1

5708 end

5709 end

5710 function Babel.sea_disc_to_space (head)

5711 local sea_ranges = Babel.sea_ranges

5712 local last_char = nil

5713 local quad = 655360 &% 10 pt = 655360 = 10 * 65536

5714 for item in node.traverse(head) do

5715 local i = item.id

5716 if i == node.id'glyph' then

5717 last_char = item

5718 elseif i == 7 and item.subtype == 3 and last_char

5719 and last_char.char > 0x0C99 then

5720 quad = font.getfont(last_char.font).size

5721 for lg, rg in pairs(sea_ranges) do

5722 if last_char.char > rg[1] and last_char.char < rg[2] then

5723 lg = lg:sub(1, 4) &% Remove trailing number of, e.g., Cyrl1

5724 local intraspace = Babel.intraspaces[lg]

5725 local intrapenalty = Babel.intrapenalties[lg]

5726 local n

5727 if intrapenalty ~= 0 then

5728 n = node.new(14, 0) &% penalty

5729 n.penalty = intrapenalty

5730 node.insert_before(head, item, n)

5731 end

5732 n = node.new(12, 13) &% (glue, spaceskip)

5733 node.setglue(n, intraspace.b * quad,

5734 intraspace.p * quad,

5735 intraspace.m * quad)

5736 node.insert_before(head, item, n)

5737 node.remove(head, item)

5738 end

5739 end

5740 end

5741 end

5742 end

5743 }&

5744 \bbl@luahyphenate}

10.7. CJK line breaking

Minimal line breaking for CJK scripts, mainly intended for simple documents and short texts as a

secondary language. Only line breaking, with a little stretching for justification, without any attempt

to adjust the spacing. It is based on (but does not strictly follow) the Unicode algorithm.

We first need a little table with the corresponding line breaking properties. A few characters have

an additional key for the width (fullwidth vs. halfwidth), not yet used. There is a separate file, defined

below.

5745 \catcode`\%=14

5746 \gdef\bbl@cjkintraspace{%

5747 \let\bbl@cjkintraspace\relax

5748 \directlua{

5749 require('babel-data-cjk.lua')

121

5750 Babel.cjk_enabled = true

5751 function Babel.cjk_linebreak(head)

5752 local GLYPH = node.id'glyph'

5753 local last_char = nil

5754 local quad = 655360 % 10 pt = 655360 = 10 * 65536

5755 local last_class = nil

5756 local last_lang = nil

5757 for item in node.traverse(head) do

5758 if item.id == GLYPH then

5759 local lang = item.lang

5760 local LOCALE = node.get_attribute(item,

5761 Babel.attr_locale)

5762 local props = Babel.locale_props[LOCALE] or {}

5763 local class = Babel.cjk_class[item.char].c

5764 if props.cjk_quotes and props.cjk_quotes[item.char] then

5765 class = props.cjk_quotes[item.char]

5766 end

5767 if class == 'cp' then class = 'cl' %)] as CL

5768 elseif class == 'id' then class = 'I'

5769 elseif class == 'cj' then class = 'I' % loose

5770 end

5771 local br = 0

5772 if class and last_class and Babel.cjk_breaks[last_class][class] then

5773 br = Babel.cjk_breaks[last_class][class]

5774 end

5775 if br == 1 and props.linebreak == 'c' and

5776 lang ~= \the\l@nohyphenation\space and

5777 last_lang ~= \the\l@nohyphenation then

5778 local intrapenalty = props.intrapenalty

5779 if intrapenalty ~= 0 then

5780 local n = node.new(14, 0) % penalty

5781 n.penalty = intrapenalty

5782 node.insert_before(head, item, n)

5783 end

5784 local intraspace = props.intraspace

5785 local n = node.new(12, 13) % (glue, spaceskip)

5786 node.setglue(n, intraspace.b * quad,

5787 intraspace.p * quad,

5788 intraspace.m * quad)

5789 node.insert_before(head, item, n)

5790 end

5791 if font.getfont(item.font) then

5792 quad = font.getfont(item.font).size

5793 end

5794 last_class = class

5795 last_lang = lang

5796 else % if penalty, glue or anything else

5797 last_class = nil

5798 end

5799 end

5800 lang.hyphenate(head)

5801 end

5802 }%

5803 \bbl@luahyphenate}

5804 \gdef\bbl@luahyphenate{%

5805 \let\bbl@luahyphenate\relax

5806 \directlua{

5807 luatexbase.add_to_callback('hyphenate',

5808 function (head, tail)

5809 if Babel.linebreaking.before then

5810 for k, func in ipairs(Babel.linebreaking.before) do

5811 func(head)

5812 end

122

5813 end

5814 lang.hyphenate(head)

5815 if Babel.cjk_enabled then

5816 Babel.cjk_linebreak(head)

5817 end

5818 if Babel.linebreaking.after then

5819 for k, func in ipairs(Babel.linebreaking.after) do

5820 func(head)

5821 end

5822 end

5823 if Babel.set_hboxed then

5824 Babel.set_hboxed(head)

5825 end

5826 if Babel.sea_enabled then

5827 Babel.sea_disc_to_space(head)

5828 end

5829 end,

5830 'Babel.hyphenate')

5831 }}

5832 \endgroup

5833 %

5834 \def\bbl@provide@intraspace{%

5835 \bbl@ifunset{bbl@intsp@\languagename}{}%

5836 {\expandafter\ifx\csname bbl@intsp@\languagename\endcsname\@empty\else

5837 \bbl@xin@{/c}{/\bbl@cl{lnbrk}}%

5838 \ifin@ % cjk

5839 \bbl@cjkintraspace

5840 \directlua{

5841 Babel.locale_props = Babel.locale_props or {}

5842 Babel.locale_props[\the\localeid].linebreak = 'c'

5843 }%

5844 \bbl@exp{\\\bbl@intraspace\bbl@cl{intsp}\\\@@}%

5845 \ifx\bbl@KVP@intrapenalty\@nnil

5846 \bbl@intrapenalty0\@@

5847 \fi

5848 \else % sea

5849 \bbl@seaintraspace

5850 \bbl@exp{\\\bbl@intraspace\bbl@cl{intsp}\\\@@}%

5851 \directlua{

5852 Babel.sea_ranges = Babel.sea_ranges or {}

5853 Babel.set_chranges('\bbl@cl{sbcp}',

5854 '\bbl@cl{chrng}')

5855 }%

5856 \ifx\bbl@KVP@intrapenalty\@nnil

5857 \bbl@intrapenalty0\@@

5858 \fi

5859 \fi

5860 \fi

5861 \ifx\bbl@KVP@intrapenalty\@nnil\else

5862 \expandafter\bbl@intrapenalty\bbl@KVP@intrapenalty\@@

5863 \fi}}

10.8. Arabic justification

WIP. \bbl@arabicjust is executed with both elongated an kashida. This must be fine tuned. The

attribute kashida is set by transforms with kashida.

5864 \ifnum\bbl@bidimode>100 \ifnum\bbl@bidimode<200

5865 \def\bblar@chars{%

5866 0628,0629,062A,062B,062C,062D,062E,062F,0630,0631,0632,0633,%

5867 0634,0635,0636,0637,0638,0639,063A,063B,063C,063D,063E,063F,%

5868 0640,0641,0642,0643,0644,0645,0646,0647,0649}

5869 \def\bblar@elongated{%

5870 0626,0628,062A,062B,0633,0634,0635,0636,063B,%

123

5871 063C,063D,063E,063F,0641,0642,0643,0644,0646,%

5872 0649,064A}

5873 \begingroup

5874 \catcode`_=11 \catcode`:=11

5875 \gdef\bblar@nofswarn{\gdef\msg_warning:nnx##1##2##3{}}

5876 \endgroup

5877 \gdef\bbl@arabicjust{%

5878 \let\bbl@arabicjust\relax

5879 \newattribute\bblar@kashida

5880 \directlua{ Babel.attr_kashida = luatexbase.registernumber'bblar@kashida' }%

5881 \bblar@kashida=\z@

5882 \bbl@patchfont{{\bbl@parsejalt}}%

5883 \directlua{

5884 Babel.arabic.elong_map = Babel.arabic.elong_map or {}

5885 Babel.arabic.elong_map[\the\localeid] = {}

5886 luatexbase.add_to_callback('post_linebreak_filter',

5887 Babel.arabic.justify, 'Babel.arabic.justify')

5888 luatexbase.add_to_callback('hpack_filter',

5889 Babel.arabic.justify_hbox, 'Babel.arabic.justify_hbox')

5890 }}%

Save both node lists to make replacement.

5891 \def\bblar@fetchjalt#1#2#3#4{%

5892 \bbl@exp{\\\bbl@foreach{#1}}{%

5893 \bbl@ifunset{bblar@JE@##1}%

5894 {\setbox\z@\hbox{\textdir TRT ^^^^200d\char"##1#2}}%

5895 {\setbox\z@\hbox{\textdir TRT ^^^^200d\char"\@nameuse{bblar@JE@##1}#2}}%

5896 \directlua{%

5897 local last = nil

5898 for item in node.traverse(tex.box[0].head) do

5899 if item.id == node.id'glyph' and item.char > 0x600 and

5900 not (item.char == 0x200D) then

5901 last = item

5902 end

5903 end

5904 Babel.arabic.#3['##1#4'] = last.char

5905 }}}

Elongated forms. Brute force. No rules at all, yet. The ideal: look at jalt table. And perhaps other

tables (falt?, cswh?). What about kaf? And diacritic positioning?

5906 \gdef\bbl@parsejalt{%

5907 \ifx\addfontfeature\@undefined\else

5908 \bbl@xin@{/e}{/\bbl@cl{lnbrk}}%

5909 \ifin@

5910 \directlua{%

5911 if Babel.arabic.elong_map[\the\localeid][\fontid\font] == nil then

5912 Babel.arabic.elong_map[\the\localeid][\fontid\font] = {}

5913 tex.print([[\string\csname\space bbl@parsejalti\endcsname]])

5914 end

5915 }%

5916 \fi

5917 \fi}

5918 \gdef\bbl@parsejalti{%

5919 \begingroup

5920 \let\bbl@parsejalt\relax % To avoid infinite loop

5921 \edef\bbl@tempb{\fontid\font}%

5922 \bblar@nofswarn

5923 \bblar@fetchjalt\bblar@elongated{}{from}{}%

5924 \bblar@fetchjalt\bblar@chars{^^^^064a}{from}{a}% Alef maksura

5925 \bblar@fetchjalt\bblar@chars{^^^^0649}{from}{y}% Yeh

5926 \addfontfeature{RawFeature=+jalt}%

5927 % \@namedef{bblar@JE@0643}{06AA}% todo: catch medial kaf

5928 \bblar@fetchjalt\bblar@elongated{}{dest}{}%

5929 \bblar@fetchjalt\bblar@chars{^^^^064a}{dest}{a}%

124

5930 \bblar@fetchjalt\bblar@chars{^^^^0649}{dest}{y}%

5931 \directlua{%

5932 for k, v in pairs(Babel.arabic.from) do

5933 if Babel.arabic.dest[k] and

5934 not (Babel.arabic.from[k] == Babel.arabic.dest[k]) then

5935 Babel.arabic.elong_map[\the\localeid][\bbl@tempb]

5936 [Babel.arabic.from[k]] = Babel.arabic.dest[k]

5937 end

5938 end

5939 }%

5940 \endgroup}

The actual justification (inspired by chickenize).

5941 \begingroup

5942 \catcode`#=11

5943 \catcode`~=11

5944 \directlua{

5945

5946 Babel.arabic = Babel.arabic or {}

5947 Babel.arabic.from = {}

5948 Babel.arabic.dest = {}

5949 Babel.arabic.justify_factor = 0.95

5950 Babel.arabic.justify_enabled = true

5951 Babel.arabic.kashida_limit = -1

5952

5953 function Babel.arabic.justify(head)

5954 if not Babel.arabic.justify_enabled then return head end

5955 for line in node.traverse_id(node.id'hlist', head) do

5956 Babel.arabic.justify_hlist(head, line)

5957 end

5958 % In case the very first item is a line (eg, in \vbox):

5959 while head.prev do head = head.prev end

5960 return head

5961 end

5962

5963 function Babel.arabic.justify_hbox(head, gc, size, pack)

5964 local has_inf = false

5965 if Babel.arabic.justify_enabled and pack == 'exactly' then

5966 for n in node.traverse_id(12, head) do

5967 if n.stretch_order > 0 then has_inf = true end

5968 end

5969 if not has_inf then

5970 Babel.arabic.justify_hlist(head, nil, gc, size, pack)

5971 end

5972 end

5973 return head

5974 end

5975

5976 function Babel.arabic.justify_hlist(head, line, gc, size, pack)

5977 local d, new

5978 local k_list, k_item, pos_inline

5979 local width, width_new, full, k_curr, wt_pos, goal, shift

5980 local subst_done = false

5981 local elong_map = Babel.arabic.elong_map

5982 local cnt

5983 local last_line

5984 local GLYPH = node.id'glyph'

5985 local KASHIDA = Babel.attr_kashida

5986 local LOCALE = Babel.attr_locale

5987

5988 if line == nil then

5989 line = {}

5990 line.glue_sign = 1

125

5991 line.glue_order = 0

5992 line.head = head

5993 line.shift = 0

5994 line.width = size

5995 end

5996

5997 % Exclude last line.

5998 if (line.next ~= nil and line.glue_order == 0) then

5999 elongs = {} % Stores elongated candidates of each line

6000 k_list = {} % And all letters with kashida

6001 pos_inline = 0 % Not yet used

6002

6003 for n in node.traverse_id(GLYPH, line.head) do

6004 pos_inline = pos_inline + 1 % To find where it is. Not used.

6005

6006 % Elongated glyphs

6007 if elong_map then

6008 local locale = node.get_attribute(n, LOCALE)

6009 if elong_map[locale] and elong_map[locale][n.font] and

6010 elong_map[locale][n.font][n.char] then

6011 table.insert(elongs, {node = n, locale = locale})

6012 node.set_attribute(n.prev, KASHIDA, 0)

6013 end

6014 end

6015

6016 % Tatwil. First create a list of nodes marked with kashida. The

6017 % rest of nodes can be ignored. The list of used weigths is build

6018 % when transforms with the key kashida= are declared.

6019 if Babel.kashida_wts then

6020 local k_wt = node.get_attribute(n, KASHIDA)

6021 if k_wt > 0 then % todo. parameter for multi inserts

6022 table.insert(k_list, {node = n, weight = k_wt, pos = pos_inline})

6023 end

6024 end

6025

6026 end % of node.traverse_id

6027

6028 if #elongs == 0 and #k_list == 0 then goto next_line end

6029 full = line.width

6030 shift = line.shift

6031 goal = full * Babel.arabic.justify_factor % A bit crude

6032 width = node.dimensions(line.head) % The 'natural' width

6033

6034 % == Elongated ==

6035 % Original idea taken from 'chikenize'

6036 while (#elongs > 0 and width < goal) do

6037 subst_done = true

6038 local x = #elongs

6039 local curr = elongs[x].node

6040 local oldchar = curr.char

6041 curr.char = elong_map[elongs[x].locale][curr.font][curr.char]

6042 width = node.dimensions(line.head) % Check if the line is too wide

6043 % Substitute back if the line would be too wide and break:

6044 if width > goal then

6045 curr.char = oldchar

6046 break

6047 end

6048 % If continue, pop the just substituted node from the list:

6049 table.remove(elongs, x)

6050 end

6051

6052 % == Tatwil ==

6053 % Traverse the kashida node list so many times as required, until

126

6054 % the line if filled. The first pass adds a tatweel after each

6055 % node with kashida in the line, the second pass adds another one,

6056 % and so on. In each pass, add first the kashida with the highest

6057 % weight, then with lower weight and so on.

6058 if #k_list == 0 then goto next_line end

6059

6060 width = node.dimensions(line.head) % The 'natural' width

6061 k_curr = #k_list % Traverse backwards, from the end

6062 wt_pos = 1

6063

6064 while width < goal do

6065 subst_done = true

6066 k_item = k_list[k_curr].node

6067 if k_list[k_curr].weight == Babel.kashida_wts[wt_pos] then

6068 d = node.copy(k_item)

6069 d.char = 0x0640

6070 d.yoffset = 0 % TODO. From the prev char. But 0 seems safe.

6071 d.xoffset = 0

6072 line.head, new = node.insert_after(line.head, k_item, d)

6073 width_new = node.dimensions(line.head)

6074 if width > goal or width == width_new then

6075 node.remove(line.head, new) % Better compute before

6076 break

6077 end

6078 if Babel.fix_diacr then

6079 Babel.fix_diacr(k_item.next)

6080 end

6081 width = width_new

6082 end

6083 if k_curr == 1 then

6084 k_curr = #k_list

6085 wt_pos = (wt_pos >= table.getn(Babel.kashida_wts)) and 1 or wt_pos+1

6086 else

6087 k_curr = k_curr - 1

6088 end

6089 end

6090

6091 % Limit the number of tatweel by removing them. Not very efficient,

6092 % but it does the job in a quite predictable way.

6093 if Babel.arabic.kashida_limit > -1 then

6094 cnt = 0

6095 for n in node.traverse_id(GLYPH, line.head) do

6096 if n.char == 0x0640 then

6097 cnt = cnt + 1

6098 if cnt > Babel.arabic.kashida_limit then

6099 node.remove(line.head, n)

6100 end

6101 else

6102 cnt = 0

6103 end

6104 end

6105 end

6106

6107 ::next_line::

6108

6109 % Must take into account marks and ins, see luatex manual.

6110 % Have to be executed only if there are changes. Investigate

6111 % what's going on exactly.

6112 if subst_done and not gc then

6113 d = node.hpack(line.head, full, 'exactly')

6114 d.shift = shift

6115 node.insert_before(head, line, d)

6116 node.remove(head, line)

127

6117 end

6118 end % if process line

6119 end

6120 }

6121 \endgroup

6122 \fi\fi % ends Arabic just block: \ifnum\bbl@bidimode>100...

10.9. Common stuff

First, a couple of auxiliary macros to set the renderer according to the script. This is done by patching

temporarily the low-level fontspecmacro containing the current features set with

\defaultfontfeatures. Admittedly this is somewhat dangerous, but that way the latter command

still works as expected, because the renderer is set just before other settings. In xetex they are set to

\relax.

6123 \def\bbl@scr@node@list{%

6124 ,Armenian,Coptic,Cyrillic,Georgian,,Glagolitic,Gothic,%

6125 ,Greek,Latin,Old Church Slavonic Cyrillic,}

6126 \ifnum\bbl@bidimode=102 % bidi-r

6127 \bbl@add\bbl@scr@node@list{Arabic,Hebrew,Syriac}

6128 \fi

6129 \def\bbl@set@renderer{%

6130 \bbl@xin@{\bbl@cl{sname}}{\bbl@scr@node@list}%

6131 \ifin@

6132 \let\bbl@unset@renderer\relax

6133 \else

6134 \bbl@exp{%

6135 \def\\\bbl@unset@renderer{%

6136 \def\<g__fontspec_default_fontopts_clist>{%

6137 \[g__fontspec_default_fontopts_clist]}}%

6138 \def\<g__fontspec_default_fontopts_clist>{%

6139 Renderer=Harfbuzz,\[g__fontspec_default_fontopts_clist]}}%

6140 \fi}

6141 <@Font selection@>

10.10.Automatic fonts and ids switching

After defining the blocks for a number of scripts (must be extended and very likely fine tuned), we

define a the function Babel.locale_map, which just traverse the node list to carry out the

replacements. The table loc_to_scr stores the script range for each locale (whose id is the key),

copied from this table (so that it can be modified on a locale basis); there is an intermediate table

named chr_to_loc built on the fly for optimization, which maps a char to the locale. This locale is

then used to get the \language as stored in locale_props, as well as the font (as requested). In the

latter table a key starting with /maps the font from the global one (the key) to the local one (the

value). Maths are skipped and discretionaries are handled in a special way.

There are two situations where the replacement is not carried out: either the letters option has

been set and the character is not a letter (in the TEX sense), or the current script is the same as the

new one.

6142 \directlua{% DL6

6143 Babel.script_blocks = {

6144 ['dflt'] = {},

6145 ['Arab'] = {{0x0600, 0x06FF}, {0x08A0, 0x08FF}, {0x0750, 0x077F},

6146 {0xFE70, 0xFEFF}, {0xFB50, 0xFDFF}, {0x1EE00, 0x1EEFF}},

6147 ['Armn'] = {{0x0530, 0x058F}},

6148 ['Beng'] = {{0x0980, 0x09FF}},

6149 ['Cher'] = {{0x13A0, 0x13FF}, {0xAB70, 0xABBF}},

6150 ['Copt'] = {{0x03E2, 0x03EF}, {0x2C80, 0x2CFF}, {0x102E0, 0x102FF}},

6151 ['Cyrl'] = {{0x0400, 0x04FF}, {0x0500, 0x052F}, {0x1C80, 0x1C8F},

6152 {0x2DE0, 0x2DFF}, {0xA640, 0xA69F}},

6153 ['Deva'] = {{0x0900, 0x097F}, {0xA8E0, 0xA8FF}},

6154 ['Ethi'] = {{0x1200, 0x137F}, {0x1380, 0x139F}, {0x2D80, 0x2DDF},

6155 {0xAB00, 0xAB2F}},

6156 ['Geor'] = {{0x10A0, 0x10FF}, {0x2D00, 0x2D2F}},

128

6157 % Don't follow strictly Unicode, which places some Coptic letters in

6158 % the 'Greek and Coptic' block

6159 ['Grek'] = {{0x0370, 0x03E1}, {0x03F0, 0x03FF}, {0x1F00, 0x1FFF}},

6160 ['Hans'] = {{0x2E80, 0x2EFF}, {0x3000, 0x303F}, {0x31C0, 0x31EF},

6161 {0x3300, 0x33FF}, {0x3400, 0x4DBF}, {0x4E00, 0x9FFF},

6162 {0xF900, 0xFAFF}, {0xFE30, 0xFE4F}, {0xFF00, 0xFFEF},

6163 {0x20000, 0x2A6DF}, {0x2A700, 0x2B73F},

6164 {0x2B740, 0x2B81F}, {0x2B820, 0x2CEAF},

6165 {0x2CEB0, 0x2EBEF}, {0x2F800, 0x2FA1F}},

6166 ['Hebr'] = {{0x0590, 0x05FF},

6167 {0xFB1F, 0xFB4E}}, % <- Includes some <reserved>

6168 ['Jpan'] = {{0x3000, 0x303F}, {0x3040, 0x309F}, {0x30A0, 0x30FF},

6169 {0x4E00, 0x9FAF}, {0xFF00, 0xFFEF}},

6170 ['Khmr'] = {{0x1780, 0x17FF}, {0x19E0, 0x19FF}},

6171 ['Knda'] = {{0x0C80, 0x0CFF}},

6172 ['Kore'] = {{0x1100, 0x11FF}, {0x3000, 0x303F}, {0x3130, 0x318F},

6173 {0x4E00, 0x9FAF}, {0xA960, 0xA97F}, {0xAC00, 0xD7AF},

6174 {0xD7B0, 0xD7FF}, {0xFF00, 0xFFEF}},

6175 ['Laoo'] = {{0x0E80, 0x0EFF}},

6176 ['Latn'] = {{0x0000, 0x007F}, {0x0080, 0x00FF}, {0x0100, 0x017F},

6177 {0x0180, 0x024F}, {0x1E00, 0x1EFF}, {0x2C60, 0x2C7F},

6178 {0xA720, 0xA7FF}, {0xAB30, 0xAB6F}},

6179 ['Mahj'] = {{0x11150, 0x1117F}},

6180 ['Mlym'] = {{0x0D00, 0x0D7F}},

6181 ['Mymr'] = {{0x1000, 0x109F}, {0xAA60, 0xAA7F}, {0xA9E0, 0xA9FF}},

6182 ['Orya'] = {{0x0B00, 0x0B7F}},

6183 ['Sinh'] = {{0x0D80, 0x0DFF}, {0x111E0, 0x111FF}},

6184 ['Syrc'] = {{0x0700, 0x074F}, {0x0860, 0x086F}},

6185 ['Taml'] = {{0x0B80, 0x0BFF}},

6186 ['Telu'] = {{0x0C00, 0x0C7F}},

6187 ['Tfng'] = {{0x2D30, 0x2D7F}},

6188 ['Thai'] = {{0x0E00, 0x0E7F}},

6189 ['Tibt'] = {{0x0F00, 0x0FFF}},

6190 ['Vaii'] = {{0xA500, 0xA63F}},

6191 ['Yiii'] = {{0xA000, 0xA48F}, {0xA490, 0xA4CF}}

6192 }

6193

6194 Babel.script_blocks.Cyrs = Babel.script_blocks.Cyrl

6195 Babel.script_blocks.Hant = Babel.script_blocks.Hans

6196 Babel.script_blocks.Kana = Babel.script_blocks.Jpan

6197

6198 function Babel.locale_map(head)

6199 if not Babel.locale_mapped then return head end

6200

6201 local LOCALE = Babel.attr_locale

6202 local GLYPH = node.id('glyph')

6203 local inmath = false

6204 local toloc_save

6205 for item in node.traverse(head) do

6206 local toloc

6207 if not inmath and item.id == GLYPH then

6208 % Optimization: build a table with the chars found

6209 if Babel.chr_to_loc[item.char] then

6210 toloc = Babel.chr_to_loc[item.char]

6211 else

6212 for lc, maps in pairs(Babel.loc_to_scr) do

6213 for _, rg in pairs(maps) do

6214 if item.char >= rg[1] and item.char <= rg[2] then

6215 Babel.chr_to_loc[item.char] = lc

6216 toloc = lc

6217 break

6218 end

6219 end

129

6220 end

6221 % Treat composite chars in a different fashion, because they

6222 % 'inherit' the previous locale.

6223 if (item.char >= 0x0300 and item.char <= 0x036F) or

6224 (item.char >= 0x1AB0 and item.char <= 0x1AFF) or

6225 (item.char >= 0x1DC0 and item.char <= 0x1DFF) then

6226 Babel.chr_to_loc[item.char] = -2000

6227 toloc = -2000

6228 end

6229 if not toloc then

6230 Babel.chr_to_loc[item.char] = -1000

6231 end

6232 end

6233 if toloc == -2000 then

6234 toloc = toloc_save

6235 elseif toloc == -1000 then

6236 toloc = nil

6237 end

6238 if toloc and Babel.locale_props[toloc] and

6239 Babel.locale_props[toloc].letters and

6240 tex.getcatcode(item.char) \string~= 11 then

6241 toloc = nil

6242 end

6243 if toloc and Babel.locale_props[toloc].script

6244 and Babel.locale_props[node.get_attribute(item, LOCALE)].script

6245 and Babel.locale_props[toloc].script ==

6246 Babel.locale_props[node.get_attribute(item, LOCALE)].script then

6247 toloc = nil

6248 end

6249 if toloc then

6250 if Babel.locale_props[toloc].lg then

6251 item.lang = Babel.locale_props[toloc].lg

6252 node.set_attribute(item, LOCALE, toloc)

6253 end

6254 if Babel.locale_props[toloc]['/'..item.font] then

6255 item.font = Babel.locale_props[toloc]['/'..item.font]

6256 end

6257 end

6258 toloc_save = toloc

6259 elseif not inmath and item.id == 7 then % Apply recursively

6260 item.replace = item.replace and Babel.locale_map(item.replace)

6261 item.pre = item.pre and Babel.locale_map(item.pre)

6262 item.post = item.post and Babel.locale_map(item.post)

6263 elseif item.id == node.id'math' then

6264 inmath = (item.subtype == 0)

6265 end

6266 end

6267 return head

6268 end

6269 }

The code for \babelcharproperty is straightforward. Just note the modified lua table can be

different.

6270 \newcommand\babelcharproperty[1]{%

6271 \count@=#1\relax

6272 \ifvmode

6273 \expandafter\bbl@chprop

6274 \else

6275 \bbl@error{charproperty-only-vertical}{}{}{}%

6276 \fi}

6277 \newcommand\bbl@chprop[3][\the\count@]{%

6278 \@tempcnta=#1\relax

6279 \bbl@ifunset{bbl@chprop@#2}% {unknown-char-property}

130

6280 {\bbl@error{unknown-char-property}{}{#2}{}}%

6281 {}%

6282 \loop

6283 \bbl@cs{chprop@#2}{#3}%

6284 \ifnum\count@<\@tempcnta

6285 \advance\count@\@ne

6286 \repeat}

6287 %

6288 \def\bbl@chprop@direction#1{%

6289 \directlua{

6290 Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}

6291 Babel.characters[\the\count@]['d'] = '#1'

6292 }}

6293 \let\bbl@chprop@bc\bbl@chprop@direction

6294 %

6295 \def\bbl@chprop@mirror#1{%

6296 \directlua{

6297 Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}

6298 Babel.characters[\the\count@]['m'] = '\number#1'

6299 }}

6300 \let\bbl@chprop@bmg\bbl@chprop@mirror

6301 %

6302 \def\bbl@chprop@linebreak#1{%

6303 \directlua{

6304 Babel.cjk_characters[\the\count@] = Babel.cjk_characters[\the\count@] or {}

6305 Babel.cjk_characters[\the\count@]['c'] = '#1'

6306 }}

6307 \let\bbl@chprop@lb\bbl@chprop@linebreak

6308 %

6309 \def\bbl@chprop@locale#1{%

6310 \directlua{

6311 Babel.chr_to_loc = Babel.chr_to_loc or {}

6312 Babel.chr_to_loc[\the\count@] =

6313 \bbl@ifblank{#1}{-1000}{\the\bbl@cs{id@@#1}}\space

6314 }}

Post-handling hyphenation patterns for non-standard rules, like ff to ff-f. There are still some

issues with speed (not very slow, but still slow). The Lua code is below.

6315 \directlua{% DL7

6316 Babel.nohyphenation = \the\l@nohyphenation

6317 }

Now the TEX high level interface, which requires the function defined above for converting strings

to functions returning a string. These functions handle the {n} syntax. For example, pre={1}{1}-

becomes function(m) return m[1]..m[1]..'-' end, where m are the matches returned after

applying the pattern. With a mapped capture the functions are similar to

function(m) return Babel.capt_map(m[1],1) end, where the last argument identifies the

mapping to be applied to m[1]. The way it is carried out is somewhat tricky, but the effect in not

dissimilar to lua load – save the code as string in a TeX macro, and expand this macro at the

appropriate place. As \directlua does not take into account the current catcode of @, we just avoid

this character in macro names (which explains the internal group, too).

6318 \begingroup

6319 \catcode`\~=12

6320 \catcode`\%=12

6321 \catcode`\&=14

6322 \catcode`\|=12

6323 \gdef\babelprehyphenation{&%

6324 \@ifnextchar[{\bbl@settransform{0}}{\bbl@settransform{0}[]}}

6325 \gdef\babelposthyphenation{&%

6326 \@ifnextchar[{\bbl@settransform{1}}{\bbl@settransform{1}[]}}

6327 %

6328 \gdef\bbl@settransform#1[#2]#3#4#5{&%

6329 \ifcase#1

6330 \bbl@activateprehyphen

131

6331 \or

6332 \bbl@activateposthyphen

6333 \fi

6334 \begingroup

6335 \def\babeltempa{\bbl@add@list\babeltempb}&%

6336 \let\babeltempb\@empty

6337 \def\bbl@tempa{#5}&%

6338 \bbl@replace\bbl@tempa{,}{ ,}&% TODO. Ugly trick to preserve {}

6339 \expandafter\bbl@foreach\expandafter{\bbl@tempa}{&%

6340 \bbl@ifsamestring{##1}{remove}&%

6341 {\bbl@add@list\babeltempb{nil}}&%

6342 {\directlua{

6343 local rep = [=[##1]=]

6344 local three_args = '%s*=%s*([%-%d%.%a{}|]+)%s+([%-%d%.%a{}|]+)%s+([%-%d%.%a{}|]+)'

6345 &% Numeric passes directly: kern, penalty...

6346 rep = rep:gsub('^%s*(remove)%s*$', 'remove = true')

6347 rep = rep:gsub('^%s*(insert)%s*,', 'insert = true, ')

6348 rep = rep:gsub('^%s*(after)%s*,', 'after = true, ')

6349 rep = rep:gsub('(string)%s*=%s*([^%s,]*)', Babel.capture_func)

6350 rep = rep:gsub('node%s*=%s*(%a+)%s*(%a*)', Babel.capture_node)

6351 rep = rep:gsub('(norule)' .. three_args,

6352 'norule = {' .. '%2, %3, %4' .. '}')

6353 if #1 == 0 or #1 == 2 then

6354 rep = rep:gsub('(space)' .. three_args,

6355 'space = {' .. '%2, %3, %4' .. '}')

6356 rep = rep:gsub('(spacefactor)' .. three_args,

6357 'spacefactor = {' .. '%2, %3, %4' .. '}')

6358 rep = rep:gsub('(kashida)%s*=%s*([^%s,]*)', Babel.capture_kashida)

6359 &% Transform values

6360 rep, n = rep:gsub('{([%a%-%.]+)|([%a%_%.]+)}',

6361 function(v,d)

6362 return string.format (

6363 '{\the\csname bbl@id@@#3\endcsname,"%s",%s}',

6364 v,

6365 load('return Babel.locale_props'..

6366 '[\the\csname bbl@id@@#3\endcsname].' .. d)())

6367 end)

6368 rep, n = rep:gsub('{([%a%-%.]+)|([%-%d%.]+)}',

6369 '{\the\csname bbl@id@@#3\endcsname,"%1",%2}')

6370 end

6371 if #1 == 1 then

6372 rep = rep:gsub('(no)%s*=%s*([^%s,]*)', Babel.capture_func)

6373 rep = rep:gsub('(pre)%s*=%s*([^%s,]*)', Babel.capture_func)

6374 rep = rep:gsub('(post)%s*=%s*([^%s,]*)', Babel.capture_func)

6375 end

6376 tex.print([[\string\babeltempa{{]] .. rep .. [[}}]])

6377 }}}&%

6378 \bbl@foreach\babeltempb{&%

6379 \bbl@forkv{{##1}}{&%

6380 \in@{,####1,}{,nil,step,data,remove,insert,string,no,pre,no,&%

6381 post,penalty,kashida,space,spacefactor,kern,node,after,norule,}&%

6382 \ifin@\else

6383 \bbl@error{bad-transform-option}{####1}{}{}&%

6384 \fi}}&%

6385 \let\bbl@kv@attribute\relax

6386 \let\bbl@kv@label\relax

6387 \let\bbl@kv@fonts\@empty

6388 \let\bbl@kv@prepend\relax

6389 \bbl@forkv{#2}{\bbl@csarg\edef{kv@##1}{##2}}&%

6390 \ifx\bbl@kv@fonts\@empty\else\bbl@settransfont\fi

6391 \ifx\bbl@kv@attribute\relax

6392 \ifx\bbl@kv@label\relax\else

6393 \bbl@exp{\\\bbl@trim@def\\\bbl@kv@fonts{\bbl@kv@fonts}}&%

132

6394 \bbl@replace\bbl@kv@fonts{ }{,}&%

6395 \edef\bbl@kv@attribute{bbl@ATR@\bbl@kv@label @#3@\bbl@kv@fonts}&%

6396 \count@\z@

6397 \def\bbl@elt##1##2##3{&%

6398 \bbl@ifsamestring{#3,\bbl@kv@label}{##1,##2}&%

6399 {\bbl@ifsamestring{\bbl@kv@fonts}{##3}&%

6400 {\count@\@ne}&%

6401 {\bbl@error{font-conflict-transforms}{}{}{}}}&%

6402 {}}&%

6403 \bbl@transfont@list

6404 \ifnum\count@=\z@

6405 \bbl@exp{\global\\\bbl@add\\\bbl@transfont@list

6406 {\\\bbl@elt{#3}{\bbl@kv@label}{\bbl@kv@fonts}}}&%

6407 \fi

6408 \bbl@ifunset{\bbl@kv@attribute}&%

6409 {\global\bbl@carg\newattribute{\bbl@kv@attribute}}&%

6410 {}&%

6411 \global\bbl@carg\setattribute{\bbl@kv@attribute}\@ne

6412 \fi

6413 \else

6414 \edef\bbl@kv@attribute{\expandafter\bbl@stripslash\bbl@kv@attribute}&%

6415 \fi

6416 \directlua{

6417 local lbkr = Babel.linebreaking.replacements[#1]

6418 local u = unicode.utf8

6419 local id, attr, label

6420 if #1 == 0 then

6421 id = \the\csname bbl@id@@#3\endcsname\space

6422 else

6423 id = \the\csname l@#3\endcsname\space

6424 end

6425 \ifx\bbl@kv@attribute\relax

6426 attr = -1

6427 \else

6428 attr = luatexbase.registernumber'\bbl@kv@attribute'

6429 \fi

6430 \ifx\bbl@kv@label\relax\else &% Same refs:

6431 label = [==[\bbl@kv@label]==]

6432 \fi

6433 &% Convert pattern:

6434 local patt = string.gsub([==[#4]==], '%s', '')

6435 if #1 == 0 then

6436 patt = string.gsub(patt, '|', ' ')

6437 end

6438 if not u.find(patt, '()', nil, true) then

6439 patt = '()' .. patt .. '()'

6440 end

6441 patt = string.gsub(patt, '%(%)%^', '^()')

6442 patt = string.gsub(patt, '%$%(%)', '()$')

6443 patt = u.gsub(patt, '{(.)}',

6444 function (n)

6445 return '%' .. (tonumber(n) and (tonumber(n)+1) or n)

6446 end)

6447 patt = u.gsub(patt, '{(%x%x%x%x+)}',

6448 function (n)

6449 return u.gsub(u.char(tonumber(n, 16)), '(%p)', '%%%1')

6450 end)

6451 lbkr[id] = lbkr[id] or {}

6452 table.insert(lbkr[id], \ifx\bbl@kv@prepend\relax\else 1,\fi

6453 { label=label, attr=attr, pattern=patt, replace={\babeltempb} })

6454 }&%

6455 \endgroup}

6456 \endgroup

133

6457 %

6458 \let\bbl@transfont@list\@empty

6459 \def\bbl@settransfont{%

6460 \global\let\bbl@settransfont\relax % Execute only once

6461 \gdef\bbl@transfont{%

6462 \def\bbl@elt####1####2####3{%

6463 \bbl@ifblank{####3}%

6464 {\count@\tw@}% Do nothing if no fonts

6465 {\count@\z@

6466 \bbl@vforeach{####3}{%

6467 \def\bbl@tempd{########1}%

6468 \edef\bbl@tempe{\bbl@transfam/\f@series/\f@shape}%

6469 \ifx\bbl@tempd\bbl@tempe

6470 \count@\@ne

6471 \else\ifx\bbl@tempd\bbl@transfam

6472 \count@\@ne

6473 \fi\fi}%

6474 \ifcase\count@

6475 \bbl@csarg\unsetattribute{ATR@####2@####1@####3}%

6476 \or

6477 \bbl@csarg\setattribute{ATR@####2@####1@####3}\@ne

6478 \fi}}%

6479 \bbl@transfont@list}%

6480 \AddToHook{selectfont}{\bbl@transfont}% Hooks are global.

6481 \gdef\bbl@transfam{-unknown-}%

6482 \bbl@foreach\bbl@font@fams{%

6483 \AddToHook{##1family}{\def\bbl@transfam{##1}}%

6484 \bbl@ifsamestring{\@nameuse{##1default}}\familydefault

6485 {\xdef\bbl@transfam{##1}}%

6486 {}}}

6487 %

6488 \DeclareRobustCommand\enablelocaletransform[1]{%

6489 \bbl@ifunset{bbl@ATR@#1@\languagename @}%

6490 {\bbl@error{transform-not-available}{#1}{}{}}%

6491 {\bbl@csarg\setattribute{ATR@#1@\languagename @}\@ne}}

6492 \DeclareRobustCommand\disablelocaletransform[1]{%

6493 \bbl@ifunset{bbl@ATR@#1@\languagename @}%

6494 {\bbl@error{transform-not-available-b}{#1}{}{}}%

6495 {\bbl@csarg\unsetattribute{ATR@#1@\languagename @}}}

The following two macros load the Lua code for transforms, but only once. The only difference is in

add_after and add_before.

6496 \def\bbl@activateposthyphen{%

6497 \let\bbl@activateposthyphen\relax

6498 \ifx\bbl@attr@hboxed\@undefined

6499 \newattribute\bbl@attr@hboxed

6500 \fi

6501 \directlua{

6502 require('babel-transforms.lua')

6503 Babel.linebreaking.add_after(Babel.post_hyphenate_replace)

6504 }}

6505 \def\bbl@activateprehyphen{%

6506 \let\bbl@activateprehyphen\relax

6507 \ifx\bbl@attr@hboxed\@undefined

6508 \newattribute\bbl@attr@hboxed

6509 \fi

6510 \directlua{

6511 require('babel-transforms.lua')

6512 Babel.linebreaking.add_before(Babel.pre_hyphenate_replace)

6513 }}

6514 \newcommand\SetTransformValue[3]{%

6515 \directlua{

6516 Babel.locale_props[\the\csname bbl@id@@#1\endcsname].vars["#2"] = #3

134

6517 }}

The code in babel-transforms.lua prints at some points the current string being transformed.

This macro first make sure this file is loaded. Then, activates temporarily this feature and typeset

inside a box the text in the argument.

6518 \newcommand\ShowBabelTransforms[1]{%

6519 \bbl@activateprehyphen

6520 \bbl@activateposthyphen

6521 \begingroup

6522 \directlua{ Babel.show_transforms = true }%

6523 \setbox\z@\vbox{#1}%

6524 \directlua{ Babel.show_transforms = false }%

6525 \endgroup}

The following experimental (and unfinished) macro applies the prehyphenation transforms for the

current locale to a string (characters and spaces) and processes it in a fully expandable way (among

other limitations, the string can’t contain]==]). The way it operates is admittedly rather

cumbersome: it converts the string to a node list, processes it, and converts it back to a string. The lua

code is in the lua file below.

6526 \newcommand\localeprehyphenation[1]{%

6527 \directlua{ Babel.string_prehyphenation([==[#1]==], \the\localeid) }}

10.11.Bidi

As a first step, add a handler for bidi and digits (and potentially other processes) just before

luaoftload is applied, which is loaded by default by LATEX. Just in case, consider the possibility it has

not been loaded.

6528 \def\bbl@activate@preotf{%

6529 \let\bbl@activate@preotf\relax % only once

6530 \directlua{

6531 function Babel.pre_otfload_v(head)

6532 if Babel.numbers and Babel.digits_mapped then

6533 head = Babel.numbers(head)

6534 end

6535 if Babel.bidi_enabled then

6536 head = Babel.bidi(head, false, dir)

6537 end

6538 return head

6539 end

6540 %

6541 function Babel.pre_otfload_h(head, gc, sz, pt, dir)

6542 if Babel.numbers and Babel.digits_mapped then

6543 head = Babel.numbers(head)

6544 end

6545 if Babel.bidi_enabled then

6546 head = Babel.bidi(head, false, dir)

6547 end

6548 return head

6549 end

6550 %

6551 luatexbase.add_to_callback('pre_linebreak_filter',

6552 Babel.pre_otfload_v,

6553 'Babel.pre_otfload_v',

6554 Babel.priority_in_callback('pre_linebreak_filter',

6555 'luaotfload.node_processor') or nil)

6556 %

6557 luatexbase.add_to_callback('hpack_filter',

6558 Babel.pre_otfload_h,

6559 'Babel.pre_otfload_h',

6560 Babel.priority_in_callback('hpack_filter',

6561 'luaotfload.node_processor') or nil)

6562 }}

135

The basic setup. The output is modified at a very low level to set the \bodydir to the \pagedir.

Sadly, we have to deal with boxes in math with basic, so the \bbl@mathboxdir hack is activated every

math with the package option bidi=. The hack for the PUA is no longer necessary with basic (24.8),

but it’s kept in basic-r.

6563 \breakafterdirmode=1

6564 \ifnum\bbl@bidimode>\@ne % Any bidi= except default (=1)

6565 \let\bbl@beforeforeign\leavevmode

6566 \AtEndOfPackage{\EnableBabelHook{babel-bidi}}

6567 \RequirePackage{luatexbase}

6568 \bbl@activate@preotf

6569 \directlua{

6570 require('babel-data-bidi.lua')

6571 \ifcase\expandafter\@gobbletwo\the\bbl@bidimode\or

6572 require('babel-bidi-basic.lua')

6573 \or

6574 require('babel-bidi-basic-r.lua')

6575 table.insert(Babel.ranges, {0xE000, 0xF8FF, 'on'})

6576 table.insert(Babel.ranges, {0xF0000, 0xFFFFD, 'on'})

6577 table.insert(Babel.ranges, {0x100000, 0x10FFFD, 'on'})

6578 \fi}

6579 \newattribute\bbl@attr@dir

6580 \directlua{ Babel.attr_dir = luatexbase.registernumber'bbl@attr@dir' }

6581 \bbl@exp{\output{\bodydir\pagedir\the\output}}

6582 \fi

6583 %

6584 \chardef\bbl@thetextdir\z@

6585 \chardef\bbl@thepardir\z@

6586 \def\bbl@setluadir#1#2{% 1=\text/pardirection 2=0l/1r/2al:

6587 \ifcase#2\relax

6588 \ifcase#1\else#1=\z@\fi

6589 \else

6590 \ifcase#1#1=\@ne\fi

6591 \fi}

\bbl@attr@dir stores the directions with a mask: ..00PPTT, with masks 0xC (PP is the par dir) and

0x3 (TT is the text dir). These macro names are shared by the 3 engines, with different definitions.

6592 \def\bbl@thedir{0}

6593 \def\bbl@textdir#1{%

6594 \bbl@setluadir\textdirection{#1}%

6595 \chardef\bbl@thetextdir#1\relax

6596 \edef\bbl@thedir{\the\numexpr\bbl@thepardir*4+#1}%

6597 \setattribute\bbl@attr@dir{\numexpr\bbl@thepardir*4+#1}}

6598 \def\bbl@pardir#1{% Used twice

6599 \bbl@setluadir\pardirection{#1}%

6600 \chardef\bbl@thepardir#1\relax}

6601 \def\bbl@bodydir{\bbl@setluadir\bodydirection}% Used once

6602 \def\bbl@dirparastext{\pardirection=\textdirection\relax}% Used once

RTL text inside math needs special attention. It affects not only to actual math stuff, but also to

‘tabular‘, which is based on a fake math.

6603 \ifnum\bbl@bidimode>\z@ % Any bidi=

6604 \def\bbl@insidemath{0}%

6605 \def\bbl@everymath{\def\bbl@insidemath{1}}

6606 \def\bbl@everydisplay{\def\bbl@insidemath{2}}

6607 \frozen@everymath\expandafter{%

6608 \expandafter\bbl@everymath\the\frozen@everymath}

6609 \frozen@everydisplay\expandafter{%

6610 \expandafter\bbl@everydisplay\the\frozen@everydisplay}

6611 \AtBeginDocument{

6612 \directlua{

6613 function Babel.math_box_dir(head)

6614 if not (token.get_macro('bbl@insidemath') == '0') then

6615 if Babel.hlist_has_bidi(head) then

136

6616 local d = node.new(node.id'dir')

6617 d.dir = '+TRT'

6618 for item in node.traverse(head) do

6619 if item.id == 11 or item.id == node.id'glyph' then

6620 head = node.insert_before(head, item, d)

6621 break

6622 end

6623 end

6624 local inmath = false

6625 for item in node.traverse(head) do

6626 if item.id == 11 then

6627 inmath = (item.subtype == 0)

6628 elseif not inmath then

6629 node.set_attribute(item,

6630 Babel.attr_dir, token.get_macro('bbl@thedir'))

6631 end

6632 end

6633 end

6634 end

6635 return head

6636 end

6637 luatexbase.add_to_callback("hpack_filter", Babel.math_box_dir,

6638 "Babel.math_box_dir", 0)

6639 if Babel.unset_atdir then

6640 luatexbase.add_to_callback("pre_linebreak_filter", Babel.unset_atdir,

6641 "Babel.unset_atdir")

6642 luatexbase.add_to_callback("hpack_filter", Babel.unset_atdir,

6643 "Babel.unset_atdir")

6644 end

6645 }}%

6646 \fi

Experimental. Tentative name.

6647 \DeclareRobustCommand\localebox[1]{%

6648 {\def\bbl@insidemath{0}%

6649 \mbox{\foreignlanguage{\languagename}{#1}}}}

10.12.Layout

Unlike xetex, luatex requires only minimal changes for right-to-left layouts, particularly in

monolingual documents (the engine itself reverses boxes – including column order or headings –,

margins, etc.) with bidi=basic, without having to patch almost any macro where text direction is

relevant.

Still, there are three areas deserving special attention, namely, tabular, math, and graphics, text

and intrinsically left-to-right elements are intermingled. I’ve made some progress in graphics, but

they’re essentially hacks; I’ve also made some progress in ‘tabular‘, but when I decided to tackle

math (both standard math and ‘amsmath‘) the nightmare began. I’m still not sure how ‘amsmath‘

should be modified, but the main problem is that, boxes are “generic” containers that can hold text,

math, and graphics (even at the same time; remember that inline math is included in the list of text

nodes marked with ’math’ (11) nodes too).

\@hangfrom is useful in many contexts and it is redefined always with the layout option.

There are, however, a number of issues when the text direction is not the same as the box direction

(as set by \bodydir), and when \parbox and \hangindent are involved. Fortunately, latest releases

of luatex simplify a lot the solution with \shapemode.

With the issue #15 I realized commands are best patched, instead of redefined. With a few lines, a

modification could be applied to several classes and packages. Now, tabular seems to work (at least

in simple cases) with array, tabularx, hhline, colortbl, longtable, booktabs, etc. However, dcolumn still

fails.

6650 \bbl@trace{Redefinitions for bidi layout}

6651 %

6652 〈〈∗More package options〉〉 ≡
6653 \chardef\bbl@eqnpos\z@

6654 \DeclareOption{leqno}{\chardef\bbl@eqnpos\@ne}

137

6655 \DeclareOption{fleqn}{\chardef\bbl@eqnpos\tw@}

6656 〈〈/More package options〉〉
6657 %

6658 \ifnum\bbl@bidimode>\z@ % Any bidi=

6659 \matheqdirmode\@ne % A luatex primitive

6660 \mathemptydisplaymode\@ne % Another

6661 \let\bbl@eqnodir\relax

6662 \def\bbl@eqdel{()}

6663 \def\bbl@eqnum{%

6664 {\normalfont\normalcolor

6665 \expandafter\@firstoftwo\bbl@eqdel

6666 \theequation

6667 \expandafter\@secondoftwo\bbl@eqdel}}

6668 \def\bbl@puteqno#1{\eqno\hbox{#1}}

6669 \def\bbl@putleqno#1{\leqno\hbox{#1}}

6670 \def\bbl@eqno@flip#1{%

6671 \ifdim\predisplaysize=-\maxdimen

6672 \eqno

6673 \hb@xt@.01pt{%

6674 \hb@xt@\displaywidth{\hss{#1\glet\bbl@upset\@currentlabel}}\hss}%

6675 \else

6676 \leqno\hbox{#1\glet\bbl@upset\@currentlabel}%

6677 \fi

6678 \bbl@exp{\def\\\@currentlabel{\[bbl@upset]}}}

6679 \def\bbl@leqno@flip#1{%

6680 \ifdim\predisplaysize=-\maxdimen

6681 \leqno

6682 \hb@xt@.01pt{%

6683 \hss\hb@xt@\displaywidth{{#1\glet\bbl@upset\@currentlabel}\hss}}%

6684 \else

6685 \eqno\hbox{#1\glet\bbl@upset\@currentlabel}%

6686 \fi

6687 \bbl@exp{\def\\\@currentlabel{\[bbl@upset]}}}

6688 %

6689 \AtBeginDocument{%

6690 \ifx\bbl@noamsmath\relax\else

6691 \ifx\maketag@@@\@undefined % Normal equation, eqnarray

6692 \AddToHook{env/equation/begin}{%

6693 \ifnum\bbl@thetextdir>\z@

6694 \def\bbl@mathboxdir{\def\bbl@insidemath{1}}%

6695 \let\@eqnnum\bbl@eqnum

6696 \edef\bbl@eqnodir{\noexpand\bbl@textdir{\the\bbl@thetextdir}}%

6697 \chardef\bbl@thetextdir\z@

6698 \bbl@add\normalfont{\bbl@eqnodir}%

6699 \ifcase\bbl@eqnpos

6700 \let\bbl@puteqno\bbl@eqno@flip

6701 \or

6702 \let\bbl@puteqno\bbl@leqno@flip

6703 \fi

6704 \fi}%

6705 \ifnum\bbl@eqnpos=\tw@\else

6706 \def\endequation{\bbl@puteqno{\@eqnnum}$$\@ignoretrue}%

6707 \fi

6708 \AddToHook{env/eqnarray/begin}{%

6709 \ifnum\bbl@thetextdir>\z@

6710 \def\bbl@mathboxdir{\def\bbl@insidemath{1}}%

6711 \edef\bbl@eqnodir{\noexpand\bbl@textdir{\the\bbl@thetextdir}}%

6712 \chardef\bbl@thetextdir\z@

6713 \bbl@add\normalfont{\bbl@eqnodir}%

6714 \ifnum\bbl@eqnpos=\@ne

6715 \def\@eqnnum{%

6716 \setbox\z@\hbox{\bbl@eqnum}%

6717 \hbox to0.01pt{\hss\hbox to\displaywidth{\box\z@\hss}}}%

138

6718 \else

6719 \let\@eqnnum\bbl@eqnum

6720 \fi

6721 \fi}

6722 % Hack for wrong vertical spacing with \[\]. YA luatex bug?:

6723 \expandafter\bbl@sreplace\csname] \endcsname{$$}{\eqno\kern.001pt$$}%

6724 \expandafter\bbl@sreplace\csname] \endcsname

6725 {\dollardollar@end}{\eqno\kern.001pt\dollardollar@end}%

6726 \else % amstex

6727 \bbl@exp{% Hack to hide maybe undefined conditionals:

6728 \chardef\bbl@eqnpos=0%

6729 \<iftagsleft@>1\<else>\<if@fleqn>2\<fi>\<fi>\relax}%

6730 \ifnum\bbl@eqnpos=\@ne

6731 \let\bbl@ams@lap\hbox

6732 \else

6733 \let\bbl@ams@lap\llap

6734 \fi

6735 \ExplSyntaxOn % Required by \bbl@sreplace with \intertext@

6736 \bbl@sreplace\intertext@{\normalbaselines}%

6737 {\normalbaselines

6738 \ifx\bbl@eqnodir\relax\else\bbl@pardir\@ne\bbl@eqnodir\fi}%

6739 \ExplSyntaxOff

6740 \def\bbl@ams@tagbox#1#2{#1{\bbl@eqnodir#2}}% #1=hbox|@lap|flip

6741 \ifx\bbl@ams@lap\hbox % leqno

6742 \def\bbl@ams@flip#1{%

6743 \hbox to 0.01pt{\hss\hbox to\displaywidth{{#1}\hss}}}%

6744 \else % eqno

6745 \def\bbl@ams@flip#1{%

6746 \hbox to 0.01pt{\hbox to\displaywidth{\hss{#1}}\hss}}%

6747 \fi

6748 \def\bbl@ams@preset#1{%

6749 \def\bbl@mathboxdir{\def\bbl@insidemath{1}}%

6750 \ifnum\bbl@thetextdir>\z@

6751 \edef\bbl@eqnodir{\noexpand\bbl@textdir{\the\bbl@thetextdir}}%

6752 \bbl@sreplace\textdef@{\hbox}{\bbl@ams@tagbox\hbox}%

6753 \bbl@sreplace\maketag@@@{\hbox}{\bbl@ams@tagbox#1}%

6754 \fi}%

6755 \ifnum\bbl@eqnpos=\tw@\else

6756 \def\bbl@ams@equation{%

6757 \def\bbl@mathboxdir{\def\bbl@insidemath{1}}%

6758 \ifnum\bbl@thetextdir>\z@

6759 \edef\bbl@eqnodir{\noexpand\bbl@textdir{\the\bbl@thetextdir}}%

6760 \chardef\bbl@thetextdir\z@

6761 \bbl@add\normalfont{\bbl@eqnodir}%

6762 \ifcase\bbl@eqnpos

6763 \def\veqno##1##2{\bbl@eqno@flip{##1##2}}%

6764 \or

6765 \def\veqno##1##2{\bbl@leqno@flip{##1##2}}%

6766 \fi

6767 \fi}%

6768 \AddToHook{env/equation/begin}{\bbl@ams@equation}%

6769 \AddToHook{env/equation*/begin}{\bbl@ams@equation}%

6770 \fi

6771 \AddToHook{env/cases/begin}{\bbl@ams@preset\bbl@ams@lap}%

6772 \AddToHook{env/multline/begin}{\bbl@ams@preset\hbox}%

6773 \AddToHook{env/gather/begin}{\bbl@ams@preset\bbl@ams@lap}%

6774 \AddToHook{env/gather*/begin}{\bbl@ams@preset\bbl@ams@lap}%

6775 \AddToHook{env/align/begin}{\bbl@ams@preset\bbl@ams@lap}%

6776 \AddToHook{env/align*/begin}{\bbl@ams@preset\bbl@ams@lap}%

6777 \AddToHook{env/alignat/begin}{\bbl@ams@preset\bbl@ams@lap}%

6778 \AddToHook{env/alignat*/begin}{\bbl@ams@preset\bbl@ams@lap}%

6779 \AddToHook{env/eqnalign/begin}{\bbl@ams@preset\hbox}%

6780 % Hackish, for proper alignment. Don’t ask me why it works!:

139

6781 \bbl@exp{% Avoid a 'visible' conditional

6782 \\\AddToHook{env/align*/end}{\<iftag@>\<else>\\\tag*{}\<fi>}%

6783 \\\AddToHook{env/alignat*/end}{\<iftag@>\<else>\\\tag*{}\<fi>}}%

6784 \AddToHook{env/flalign/begin}{\bbl@ams@preset\hbox}%

6785 \AddToHook{env/split/before}{%

6786 \def\bbl@mathboxdir{\def\bbl@insidemath{1}}%

6787 \ifnum\bbl@thetextdir>\z@

6788 \bbl@ifsamestring\@currenvir{equation}%

6789 {\ifx\bbl@ams@lap\hbox % leqno

6790 \def\bbl@ams@flip#1{%

6791 \hbox to 0.01pt{\hbox to\displaywidth{{#1}\hss}\hss}}%

6792 \else

6793 \def\bbl@ams@flip#1{%

6794 \hbox to 0.01pt{\hss\hbox to\displaywidth{\hss{#1}}}}%

6795 \fi}%

6796 {}%

6797 \fi}%

6798 \fi\fi}

6799 \fi

Declarations specific to lua, called by \babelprovide.

6800 \def\bbl@provide@extra#1{%

6801 % == onchar ==

6802 \ifx\bbl@KVP@onchar\@nnil\else

6803 \bbl@luahyphenate

6804 \bbl@exp{%

6805 \\\AddToHook{env/document/before}{%

6806 {\let\\\bbl@ifrestoring\\\@firstoftwo

6807 \\\select@language{#1}{}}}}%

6808 \directlua{

6809 if Babel.locale_mapped == nil then

6810 Babel.locale_mapped = true

6811 Babel.linebreaking.add_before(Babel.locale_map, 1)

6812 Babel.loc_to_scr = {}

6813 Babel.chr_to_loc = Babel.chr_to_loc or {}

6814 end

6815 Babel.locale_props[\the\localeid].letters = false

6816 }%

6817 \bbl@xin@{ letters }{ \bbl@KVP@onchar\space}%

6818 \ifin@

6819 \directlua{

6820 Babel.locale_props[\the\localeid].letters = true

6821 }%

6822 \fi

6823 \bbl@xin@{ ids }{ \bbl@KVP@onchar\space}%

6824 \ifin@

6825 \ifx\bbl@starthyphens\@undefined % Needed if no explicit selection

6826 \AddBabelHook{babel-onchar}{beforestart}{{\bbl@starthyphens}}%

6827 \fi

6828 \bbl@exp{\\\bbl@add\\\bbl@starthyphens

6829 {\\\bbl@patterns@lua{\languagename}}}%

6830 \directlua{

6831 if Babel.script_blocks['\bbl@cl{sbcp}'] then

6832 Babel.loc_to_scr[\the\localeid] = Babel.script_blocks['\bbl@cl{sbcp}']

6833 Babel.locale_props[\the\localeid].lg = \the\@nameuse{l@\languagename}\space

6834 end

6835 }%

6836 \fi

6837 \bbl@xin@{ fonts }{ \bbl@KVP@onchar\space}%

6838 \ifin@

6839 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

6840 \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%

6841 \directlua{

140

6842 if Babel.script_blocks['\bbl@cl{sbcp}'] then

6843 Babel.loc_to_scr[\the\localeid] =

6844 Babel.script_blocks['\bbl@cl{sbcp}']

6845 end}%

6846 \ifx\bbl@mapselect\@undefined

6847 \AtBeginDocument{%

6848 \bbl@patchfont{{\bbl@mapselect}}%

6849 {\selectfont}}%

6850 \def\bbl@mapselect{%

6851 \let\bbl@mapselect\relax

6852 \edef\bbl@prefontid{\fontid\font}}%

6853 \def\bbl@mapdir##1{%

6854 \begingroup

6855 \setbox\z@\hbox{% Force text mode

6856 \def\languagename{##1}%

6857 \let\bbl@ifrestoring\@firstoftwo % To avoid font warning

6858 \bbl@switchfont

6859 \ifnum\fontid\font>\z@ % A hack, for the pgf nullfont hack

6860 \directlua{

6861 Babel.locale_props[\the\csname bbl@id@@##1\endcsname]%

6862 ['/\bbl@prefontid'] = \fontid\font\space}%

6863 \fi}%

6864 \endgroup}%

6865 \fi

6866 \bbl@exp{\\\bbl@add\\\bbl@mapselect{\\\bbl@mapdir{\languagename}}}%

6867 \fi

6868 \fi

6869 % == mapfont ==

6870 % For bidi texts, to switch the font based on direction. Deprecated

6871 \ifx\bbl@KVP@mapfont\@nnil\else

6872 \bbl@ifsamestring{\bbl@KVP@mapfont}{direction}{}%

6873 {\bbl@error{unknown-mapfont}{}{}{}}%

6874 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

6875 \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%

6876 \ifx\bbl@mapselect\@undefined

6877 \AtBeginDocument{%

6878 \bbl@patchfont{{\bbl@mapselect}}%

6879 {\selectfont}}%

6880 \def\bbl@mapselect{%

6881 \let\bbl@mapselect\relax

6882 \edef\bbl@prefontid{\fontid\font}}%

6883 \def\bbl@mapdir##1{%

6884 {\def\languagename{##1}%

6885 \let\bbl@ifrestoring\@firstoftwo % avoid font warning

6886 \bbl@switchfont

6887 \directlua{Babel.fontmap

6888 [\the\csname bbl@wdir@##1\endcsname]%

6889 [\bbl@prefontid]=\fontid\font}}}%

6890 \fi

6891 \bbl@exp{\\\bbl@add\\\bbl@mapselect{\\\bbl@mapdir{\languagename}}}%

6892 \fi

6893 % == Line breaking: CJK quotes ==

6894 \ifcase\bbl@engine\or

6895 \bbl@xin@{/c}{/\bbl@cl{lnbrk}}%

6896 \ifin@

6897 \bbl@ifunset{bbl@quote@\languagename}{}%

6898 {\directlua{

6899 Babel.locale_props[\the\localeid].cjk_quotes = {}

6900 local cs = 'op'

6901 for c in string.utfvalues(%

6902 [[\csname bbl@quote@\languagename\endcsname]]) do

6903 if Babel.cjk_characters[c].c == 'qu' then

6904 Babel.locale_props[\the\localeid].cjk_quotes[c] = cs

141

6905 end

6906 cs = (cs == 'op') and 'cl' or 'op'

6907 end

6908 }}%

6909 \fi

6910 \fi

6911 % == Counters: mapdigits ==

6912 % Native digits

6913 \ifx\bbl@KVP@mapdigits\@nnil\else

6914 \bbl@ifunset{bbl@dgnat@\languagename}{}%

6915 {\bbl@activate@preotf

6916 \directlua{

6917 Babel.digits_mapped = true

6918 Babel.digits = Babel.digits or {}

6919 Babel.digits[\the\localeid] =

6920 table.pack(string.utfvalue('\bbl@cl{dgnat}'))

6921 if not Babel.numbers then

6922 function Babel.numbers(head)

6923 local LOCALE = Babel.attr_locale

6924 local GLYPH = node.id'glyph'

6925 local inmath = false

6926 for item in node.traverse(head) do

6927 if not inmath and item.id == GLYPH then

6928 local temp = node.get_attribute(item, LOCALE)

6929 if Babel.digits[temp] then

6930 local chr = item.char

6931 if chr > 47 and chr < 58 then

6932 item.char = Babel.digits[temp][chr-47]

6933 end

6934 end

6935 elseif item.id == node.id'math' then

6936 inmath = (item.subtype == 0)

6937 end

6938 end

6939 return head

6940 end

6941 end

6942 }}%

6943 \fi

6944 % == transforms ==

6945 \ifx\bbl@KVP@transforms\@nnil\else

6946 \def\bbl@elt##1##2##3{%

6947 \in@{$transforms.}{$##1}%

6948 \ifin@

6949 \def\bbl@tempa{##1}%

6950 \bbl@replace\bbl@tempa{transforms.}{}%

6951 \bbl@carg\bbl@transforms{babel\bbl@tempa}{##2}{##3}%

6952 \fi}%

6953 \bbl@exp{%

6954 \\\bbl@ifblank{\bbl@cl{dgnat}}%

6955 {\let\\\bbl@tempa\relax}%

6956 {\def\\\bbl@tempa{%

6957 \\\bbl@elt{transforms.prehyphenation}%

6958 {digits.native.1.0}{([0-9])}%

6959 \\\bbl@elt{transforms.prehyphenation}%

6960 {digits.native.1.1}{string={1\string|0123456789\string|\bbl@cl{dgnat}}}}}}%

6961 \ifx\bbl@tempa\relax\else

6962 \toks@\expandafter\expandafter\expandafter{%

6963 \csname bbl@inidata@\languagename\endcsname}%

6964 \bbl@csarg\edef{inidata@\languagename}{%

6965 \unexpanded\expandafter{\bbl@tempa}%

6966 \the\toks@}%

6967 \fi

142

6968 \csname bbl@inidata@\languagename\endcsname

6969 \bbl@release@transforms\relax % \relax closes the last item.

6970 \fi}

Start tabular here:

6971 \def\localerestoredirs{%

6972 \ifcase\bbl@thetextdir

6973 \ifnum\textdirection=\z@\else\textdirection=\z@\fi

6974 \else

6975 \ifnum\textdirection=\@ne\else\textdirection=\@ne\fi

6976 \fi

6977 \ifcase\bbl@thepardir

6978 \ifnum\pardirection=\z@\else\pardirection=\z@\bodydirection=\z@\fi

6979 \else

6980 \ifnum\pardirection=\@ne\else\pardirection=\@ne\bodydirection=\@ne\fi

6981 \fi}

6982 %

6983 \IfBabelLayout{tabular}%

6984 {\chardef\bbl@tabular@mode\tw@}% All RTL

6985 {\IfBabelLayout{notabular}%

6986 {\chardef\bbl@tabular@mode\z@}%

6987 {\chardef\bbl@tabular@mode\@ne}}% Mixed, with LTR cols

6988 %

6989 \ifnum\bbl@bidimode>\@ne % Any lua bidi= except default=1

6990 % Redefine: vrules mess up dirs (why?).

6991 \AtBeginDocument{\def\@arstrut{\relax\copy\@arstrutbox}}%

6992 \ifcase\bbl@tabular@mode\or % 1 = Mixed - default

6993 \let\bbl@parabefore\relax

6994 \AddToHook{para/before}{\bbl@parabefore}

6995 \AtBeginDocument{%

6996 \bbl@replace\@tabular{$}{$%

6997 \def\bbl@insidemath{0}%

6998 \def\bbl@parabefore{\localerestoredirs}}%

6999 \ifnum\bbl@tabular@mode=\@ne

7000 \bbl@ifunset{@tabclassz}{}{%

7001 \bbl@exp{% Hide conditionals

7002 \\\bbl@sreplace\\\@tabclassz

7003 {\<ifcase>\\\@chnum}%

7004 {\\\localerestoredirs\<ifcase>\\\@chnum}}}%

7005 \@ifpackageloaded{colortbl}%

7006 {\bbl@sreplace\@classz

7007 {\hbox\bgroup\bgroup}{\hbox\bgroup\bgroup\localerestoredirs}}%

7008 {\@ifpackageloaded{array}%

7009 {\bbl@exp{% Hide conditionals

7010 \\\bbl@sreplace\\\@classz

7011 {\<ifcase>\\\@chnum}%

7012 {\bgroup\\\localerestoredirs\<ifcase>\\\@chnum}%

7013 \\\bbl@sreplace\\\@classz

7014 {\\\do@row@strut\<fi>}{\\\do@row@strut\<fi>\egroup}}}%

7015 {}}%

7016 \fi}%

7017 \or % 2 = All RTL - tabular

7018 \let\bbl@parabefore\relax

7019 \AddToHook{para/before}{\bbl@parabefore}%

7020 \AtBeginDocument{%

7021 \@ifpackageloaded{colortbl}%

7022 {\bbl@replace\@tabular{$}{$%

7023 \def\bbl@insidemath{0}%

7024 \def\bbl@parabefore{\localerestoredirs}}%

7025 \bbl@sreplace\@classz

7026 {\hbox\bgroup\bgroup}{\hbox\bgroup\bgroup\localerestoredirs}}%

7027 {}}%

7028 \fi

143

Very likely the \output routine must be patched in a quite general way to make sure the \bodydir

is set to \pagedir. Note outside \output they can be different (and often are). For the moment, two

ad hoc changes.

7029 \AtBeginDocument{%

7030 \@ifpackageloaded{multicol}%

7031 {\toks@\expandafter{\multi@column@out}%

7032 \edef\multi@column@out{\bodydir\pagedir\the\toks@}}%

7033 {}%

7034 \@ifpackageloaded{paracol}%

7035 {\edef\pcol@output{%

7036 \bodydir\pagedir\unexpanded\expandafter{\pcol@output}}}%

7037 {}}%

7038 \fi

Finish here if there in no layout.

7039 \ifx\bbl@opt@layout\@nnil\endinput\fi

Omega provided a companion to \mathdir (\nextfakemath) for those cases where we did not want

it to be applied, so that the writing direction of the main text was left unchanged. \bbl@nextfake is

an attempt to emulate it, because luatex has removed it without an alternative. Used in tabular,

\underline and \LaTeX. Also, \hangindent does not honour direction changes by default, so we

need to redefine \@hangfrom.

7040 \ifnum\bbl@bidimode>\z@ % Any bidi=

7041 \def\bbl@nextfake#1{% non-local changes, use always inside a group!

7042 \bbl@exp{%

7043 \mathdir\the\bodydir

7044 #1% Once entered in math, set boxes to restore values

7045 \def\\\bbl@insidemath{0}%

7046 \<ifmmode>%

7047 \everyvbox{%

7048 \the\everyvbox

7049 \bodydir\the\bodydir

7050 \mathdir\the\mathdir

7051 \everyhbox{\the\everyhbox}%

7052 \everyvbox{\the\everyvbox}}%

7053 \everyhbox{%

7054 \the\everyhbox

7055 \bodydir\the\bodydir

7056 \mathdir\the\mathdir

7057 \everyhbox{\the\everyhbox}%

7058 \everyvbox{\the\everyvbox}}%

7059 \<fi>}}%

7060 \IfBabelLayout{nopars}

7061 {}

7062 {\edef\bbl@opt@layout{\bbl@opt@layout.pars.}}%

7063 \IfBabelLayout{pars}

7064 {\def\@hangfrom#1{%

7065 \setbox\@tempboxa\hbox{{#1}}%

7066 \hangindent\wd\@tempboxa

7067 \ifnum\pagedirection=\pardirection\else

7068 \shapemode\@ne

7069 \fi

7070 \noindent\box\@tempboxa}}

7071 {}

7072 \fi

7073 %

7074 \IfBabelLayout{tabular}

7075 {\let\bbl@OL@@tabular\@tabular

7076 \bbl@replace\@tabular{$}{\bbl@nextfake$}%

7077 \let\bbl@NL@@tabular\@tabular

7078 \AtBeginDocument{%

7079 \ifx\bbl@NL@@tabular\@tabular\else

7080 \bbl@exp{\\\in@{\\\bbl@nextfake}{\[@tabular]}}%

144

7081 \ifin@\else

7082 \bbl@replace\@tabular{$}{\bbl@nextfake$}%

7083 \fi

7084 \let\bbl@NL@@tabular\@tabular

7085 \fi}}

7086 {}

7087 %

7088 \IfBabelLayout{lists}

7089 {\let\bbl@OL@list\list

7090 \bbl@sreplace\list{\parshape}{\bbl@listparshape}%

7091 \let\bbl@NL@list\list

7092 \def\bbl@listparshape#1#2#3{%

7093 \parshape #1 #2 #3 %

7094 \ifnum\pagedirection=\pardirection\else

7095 \shapemode\tw@

7096 \fi}}

7097 {}

7098 %

7099 \IfBabelLayout{graphics}

7100 {\let\bbl@pictresetdir\relax

7101 \def\bbl@pictsetdir#1{%

7102 \ifcase\bbl@thetextdir

7103 \let\bbl@pictresetdir\relax

7104 \else

7105 \ifcase#1\bodydir TLT % Remember this sets the inner boxes

7106 \or\textdir TLT

7107 \else\bodydir TLT \textdir TLT

7108 \fi

7109 % \(text|par)dir required in pgf:

7110 \def\bbl@pictresetdir{\bodydir TRT\pardir TRT\textdir TRT\relax}%

7111 \fi}%

7112 \AddToHook{env/picture/begin}{\bbl@pictsetdir\tw@}%

7113 \directlua{

7114 Babel.get_picture_dir = true

7115 Babel.picture_has_bidi = 0

7116 %

7117 function Babel.picture_dir (head)

7118 if not Babel.get_picture_dir then return head end

7119 if Babel.hlist_has_bidi(head) then

7120 Babel.picture_has_bidi = 1

7121 end

7122 return head

7123 end

7124 luatexbase.add_to_callback("hpack_filter", Babel.picture_dir,

7125 "Babel.picture_dir")

7126 }%

7127 \AtBeginDocument{%

7128 \def\LS@rot{%

7129 \setbox\@outputbox\vbox{%

7130 \hbox dir TLT{\rotatebox{90}{\box\@outputbox}}}}%

7131 \long\def\put(#1,#2)#3{%

7132 \@killglue

7133 % Try:

7134 \ifx\bbl@pictresetdir\relax

7135 \def\bbl@tempc{0}%

7136 \else

7137 \directlua{

7138 Babel.get_picture_dir = true

7139 Babel.picture_has_bidi = 0

7140 }%

7141 \setbox\z@\hb@xt@\z@{%

7142 \@defaultunitsset\@tempdimc{#1}\unitlength

7143 \kern\@tempdimc

145

7144 #3\hss}%

7145 \edef\bbl@tempc{\directlua{tex.print(Babel.picture_has_bidi)}}%

7146 \fi

7147 % Do:

7148 \@defaultunitsset\@tempdimc{#2}\unitlength

7149 \raise\@tempdimc\hb@xt@\z@{%

7150 \@defaultunitsset\@tempdimc{#1}\unitlength

7151 \kern\@tempdimc

7152 {\ifnum\bbl@tempc>\z@\bbl@pictresetdir\fi#3}\hss}%

7153 \ignorespaces}%

7154 \MakeRobust\put}%

7155 \AtBeginDocument

7156 {\AddToHook{cmd/diagbox@pict/before}{\let\bbl@pictsetdir\@gobble}%

7157 \ifx\pgfpicture\@undefined\else

7158 \AddToHook{env/pgfpicture/begin}{\bbl@pictsetdir\@ne}%

7159 \bbl@add\pgfinterruptpicture{\bbl@pictresetdir}%

7160 \bbl@add\pgfsys@beginpicture{\bbl@pictsetdir\z@}%

7161 \fi

7162 \ifx\tikzpicture\@undefined\else

7163 \AddToHook{env/tikzpicture/begin}{\bbl@pictsetdir\tw@}%

7164 \bbl@add\tikz@atbegin@node{\bbl@pictresetdir}%

7165 \bbl@sreplace\tikz{\begingroup}{\begingroup\bbl@pictsetdir\tw@}%

7166 \bbl@sreplace\tikzpicture{\begingroup}{\begingroup\bbl@pictsetdir\tw@}%

7167 \fi

7168 \ifx\tcolorbox\@undefined\else

7169 \def\tcb@drawing@env@begin{%

7170 \csname tcb@before@\tcb@split@state\endcsname

7171 \bbl@pictsetdir\tw@

7172 \begin{\kvtcb@graphenv}%

7173 \tcb@bbdraw

7174 \tcb@apply@graph@patches}%

7175 \def\tcb@drawing@env@end{%

7176 \end{\kvtcb@graphenv}%

7177 \bbl@pictresetdir

7178 \csname tcb@after@\tcb@split@state\endcsname}%

7179 \fi

7180 }}

7181 {}

Implicitly reverses sectioning labels in bidi=basic-r, because the full stop is not in contact with L

numbers any more. I think there must be a better way. Assumes bidi=basic, but there are some

additional readjustments for bidi=default.

7182 \IfBabelLayout{counters*}%

7183 {\bbl@add\bbl@opt@layout{.counters.}%

7184 \directlua{

7185 luatexbase.add_to_callback("process_output_buffer",

7186 Babel.discard_sublr , "Babel.discard_sublr") }%

7187 }{}

7188 \IfBabelLayout{counters}%

7189 {\let\bbl@OL@@textsuperscript\@textsuperscript

7190 \bbl@sreplace\@textsuperscript{\m@th}{\m@th\mathdir\pagedir}%

7191 \let\bbl@latinarabic=\@arabic

7192 \let\bbl@OL@@arabic\@arabic

7193 \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%

7194 \@ifpackagewith{babel}{bidi=default}%

7195 {\let\bbl@asciiroman=\@roman

7196 \let\bbl@OL@@roman\@roman

7197 \def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%

7198 \let\bbl@asciiRoman=\@Roman

7199 \let\bbl@OL@@roman\@Roman

7200 \def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}%

7201 \let\bbl@OL@labelenumii\labelenumii

7202 \def\labelenumii{)\theenumii(}%

146

7203 \let\bbl@OL@p@enumiii\p@enumiii

7204 \def\p@enumiii{\p@enumii)\theenumii(}}{}}{}

Some LATEX macros use internally the math mode for text formatting. They have very little in

common and are grouped here, as a single option.

7205 \IfBabelLayout{extras}%

7206 {\bbl@ncarg\let\bbl@OL@underline{underline }%

7207 \bbl@carg\bbl@sreplace{underline }%

7208 {$\@@underline}{\bgroup\bbl@nextfake$\@@underline}%

7209 \bbl@carg\bbl@sreplace{underline }%

7210 {\m@th$}{\m@th$\egroup}%

7211 \let\bbl@OL@LaTeXe\LaTeXe

7212 \DeclareRobustCommand{\LaTeXe}{\mbox{\m@th

7213 \if b\expandafter\@car\f@series\@nil\boldmath\fi

7214 \babelsublr{%

7215 \LaTeX\kern.15em2\bbl@nextfake$_{\textstyle\varepsilon}$}}}}

7216 {}

7217 〈/luatex〉

10.13.Lua: transforms

After declaring the table containing the patterns with their replacements, we define some auxiliary

functions: str_to_nodes converts the string returned by a function to a node list, taking the node at

base as a model (font, language, etc.); fetch_word fetches a series of glyphs and discretionaries,

which pattern is matched against (if there is a match, it is called again before trying other patterns,

and this is very likely the main bottleneck).

post_hyphenate_replace is the callback applied after lang.hyphenate. This means the automatic

hyphenation points are known. As empty captures return a byte position (as explained in the luatex

manual), we must convert it to a utf8 position. With first, the last byte can be the leading byte in a

utf8 sequence, so we just remove it and add 1 to the resulting length. With last we must take into

account the capture position points to the next character. Here word_head points to the starting node

of the text to be matched.

7218 〈∗transforms〉
7219 Babel.linebreaking.replacements = {}

7220 Babel.linebreaking.replacements[0] = {} -- pre

7221 Babel.linebreaking.replacements[1] = {} -- post

7222

7223 function Babel.tovalue(v)

7224 if type(v) == 'table' then

7225 return Babel.locale_props[v[1]].vars[v[2]] or v[3]

7226 else

7227 return v

7228 end

7229 end

7230

7231 Babel.attr_hboxed = luatexbase.registernumber'bbl@attr@hboxed'

7232

7233 function Babel.set_hboxed(head, gc)

7234 for item in node.traverse(head) do

7235 node.set_attribute(item, Babel.attr_hboxed, 1)

7236 end

7237 return head

7238 end

7239

7240 Babel.fetch_subtext = {}

7241

7242 Babel.ignore_pre_char = function(node)

7243 return (node.lang == Babel.nohyphenation)

7244 end

7245

7246 Babel.show_transforms = false

7247

7248 -- Merging both functions doesn't seen feasible, because there are too

147

7249 -- many differences.

7250 Babel.fetch_subtext[0] = function(head)

7251 local word_string = ''

7252 local word_nodes = {}

7253 local lang

7254 local item = head

7255 local inmath = false

7256

7257 while item do

7258

7259 if item.id == 11 then

7260 inmath = (item.subtype == 0)

7261 end

7262

7263 if inmath then

7264 -- pass

7265

7266 elseif item.id == 29 then

7267 local locale = node.get_attribute(item, Babel.attr_locale)

7268

7269 if lang == locale or lang == nil then

7270 lang = lang or locale

7271 if Babel.ignore_pre_char(item) then

7272 word_string = word_string .. Babel.us_char

7273 else

7274 if node.has_attribute(item, Babel.attr_hboxed) then

7275 word_string = word_string .. Babel.us_char

7276 else

7277 word_string = word_string .. unicode.utf8.char(item.char)

7278 end

7279 end

7280 word_nodes[#word_nodes+1] = item

7281 else

7282 break

7283 end

7284

7285 elseif item.id == 12 and item.subtype == 13 then

7286 if node.has_attribute(item, Babel.attr_hboxed) then

7287 word_string = word_string .. Babel.us_char

7288 else

7289 word_string = word_string .. ' '

7290 end

7291 word_nodes[#word_nodes+1] = item

7292

7293 -- Ignore leading unrecognized nodes, too.

7294 elseif word_string ~= '' then

7295 word_string = word_string .. Babel.us_char

7296 word_nodes[#word_nodes+1] = item -- Will be ignored

7297 end

7298

7299 item = item.next

7300 end

7301

7302 -- Here and above we remove some trailing chars but not the

7303 -- corresponding nodes. But they aren't accessed.

7304 if word_string:sub(-1) == ' ' then

7305 word_string = word_string:sub(1,-2)

7306 end

7307 if Babel.show_transforms then texio.write_nl(word_string) end

7308 word_string = unicode.utf8.gsub(word_string, Babel.us_char .. '+$', '')

7309 return word_string, word_nodes, item, lang

7310 end

7311

148

7312 Babel.fetch_subtext[1] = function(head)

7313 local word_string = ''

7314 local word_nodes = {}

7315 local lang

7316 local item = head

7317 local inmath = false

7318

7319 while item do

7320

7321 if item.id == 11 then

7322 inmath = (item.subtype == 0)

7323 end

7324

7325 if inmath then

7326 -- pass

7327

7328 elseif item.id == 29 then

7329 if item.lang == lang or lang == nil then

7330 lang = lang or item.lang

7331 if node.has_attribute(item, Babel.attr_hboxed) then

7332 word_string = word_string .. Babel.us_char

7333 elseif (item.char == 124) or (item.char == 61) then -- not =, not |

7334 word_string = word_string .. Babel.us_char

7335 else

7336 word_string = word_string .. unicode.utf8.char(item.char)

7337 end

7338 word_nodes[#word_nodes+1] = item

7339 else

7340 break

7341 end

7342

7343 elseif item.id == 7 and item.subtype == 2 then

7344 if node.has_attribute(item, Babel.attr_hboxed) then

7345 word_string = word_string .. Babel.us_char

7346 else

7347 word_string = word_string .. '='

7348 end

7349 word_nodes[#word_nodes+1] = item

7350

7351 elseif item.id == 7 and item.subtype == 3 then

7352 if node.has_attribute(item, Babel.attr_hboxed) then

7353 word_string = word_string .. Babel.us_char

7354 else

7355 word_string = word_string .. '|'

7356 end

7357 word_nodes[#word_nodes+1] = item

7358

7359 -- (1) Go to next word if nothing was found, and (2) implicitly

7360 -- remove leading USs.

7361 elseif word_string == '' then

7362 -- pass

7363

7364 -- This is the responsible for splitting by words.

7365 elseif (item.id == 12 and item.subtype == 13) then

7366 break

7367

7368 else

7369 word_string = word_string .. Babel.us_char

7370 word_nodes[#word_nodes+1] = item -- Will be ignored

7371 end

7372

7373 item = item.next

7374 end

149

7375 if Babel.show_transforms then texio.write_nl(word_string) end

7376 word_string = unicode.utf8.gsub(word_string, Babel.us_char .. '+$', '')

7377 return word_string, word_nodes, item, lang

7378 end

7379

7380 function Babel.pre_hyphenate_replace(head)

7381 Babel.hyphenate_replace(head, 0)

7382 end

7383

7384 function Babel.post_hyphenate_replace(head)

7385 Babel.hyphenate_replace(head, 1)

7386 end

7387

7388 Babel.us_char = string.char(31)

7389

7390 function Babel.hyphenate_replace(head, mode)

7391 local u = unicode.utf8

7392 local lbkr = Babel.linebreaking.replacements[mode]

7393 local tovalue = Babel.tovalue

7394

7395 local word_head = head

7396

7397 if Babel.show_transforms then

7398 texio.write_nl('\n==== Showing ' .. (mode == 0 and 'pre' or 'post') .. 'hyphenation ====')

7399 end

7400

7401 while true do -- for each subtext block

7402

7403 local w, w_nodes, nw, lang = Babel.fetch_subtext[mode](word_head)

7404

7405 if Babel.debug then

7406 print()

7407 print((mode == 0) and '@@@@<' or '@@@@>', w)

7408 end

7409

7410 if nw == nil and w == '' then break end

7411

7412 if not lang then goto next end

7413 if not lbkr[lang] then goto next end

7414

7415 -- For each saved (pre|post)hyphenation. TODO. Reconsider how

7416 -- loops are nested.

7417 for k=1, #lbkr[lang] do

7418 local p = lbkr[lang][k].pattern

7419 local r = lbkr[lang][k].replace

7420 local attr = lbkr[lang][k].attr or -1

7421

7422 if Babel.debug then

7423 print('*****', p, mode)

7424 end

7425

7426 -- This variable is set in some cases below to the first *byte*

7427 -- after the match, either as found by u.match (faster) or the

7428 -- computed position based on sc if w has changed.

7429 local last_match = 0

7430 local step = 0

7431

7432 -- For every match.

7433 while true do

7434 if Babel.debug then

7435 print('=====')

7436 end

7437 local new -- used when inserting and removing nodes

150

7438 local dummy_node -- used by after

7439

7440 local matches = { u.match(w, p, last_match) }

7441

7442 if #matches < 2 then break end

7443

7444 -- Get and remove empty captures (with ()'s, which return a

7445 -- number with the position), and keep actual captures

7446 -- (from (...)), if any, in matches.

7447 local first = table.remove(matches, 1)

7448 local last = table.remove(matches, #matches)

7449 -- Non re-fetched substrings may contain \31, which separates

7450 -- subsubstrings.

7451 if string.find(w:sub(first, last-1), Babel.us_char) then break end

7452

7453 local save_last = last -- with A()BC()D, points to D

7454

7455 -- Fix offsets, from bytes to unicode. Explained above.

7456 first = u.len(w:sub(1, first-1)) + 1

7457 last = u.len(w:sub(1, last-1)) -- now last points to C

7458

7459 -- This loop stores in a small table the nodes

7460 -- corresponding to the pattern. Used by 'data' to provide a

7461 -- predictable behavior with 'insert' (w_nodes is modified on

7462 -- the fly), and also access to 'remove'd nodes.

7463 local sc = first-1 -- Used below, too

7464 local data_nodes = {}

7465

7466 local enabled = true

7467 for q = 1, last-first+1 do

7468 data_nodes[q] = w_nodes[sc+q]

7469 if enabled

7470 and attr > -1

7471 and not node.has_attribute(data_nodes[q], attr)

7472 then

7473 enabled = false

7474 end

7475 end

7476

7477 -- This loop traverses the matched substring and takes the

7478 -- corresponding action stored in the replacement list.

7479 -- sc = the position in substr nodes / string

7480 -- rc = the replacement table index

7481 local rc = 0

7482

7483 ------- TODO. dummy_node?

7484 while rc < last-first+1 or dummy_node do -- for each replacement

7485 if Babel.debug then

7486 print('.....', rc + 1)

7487 end

7488 sc = sc + 1

7489 rc = rc + 1

7490

7491 if Babel.debug then

7492 Babel.debug_hyph(w, w_nodes, sc, first, last, last_match)

7493 local ss = ''

7494 for itt in node.traverse(head) do

7495 if itt.id == 29 then

7496 ss = ss .. unicode.utf8.char(itt.char)

7497 else

7498 ss = ss .. '{' .. itt.id .. '}'

7499 end

7500 end

151

7501 print('*****************', ss)

7502

7503 end

7504

7505 local crep = r[rc]

7506 local item = w_nodes[sc]

7507 local item_base = item

7508 local placeholder = Babel.us_char

7509 local d

7510

7511 if crep and crep.data then

7512 item_base = data_nodes[crep.data]

7513 end

7514

7515 if crep then

7516 step = crep.step or step

7517 end

7518

7519 if crep and crep.after then

7520 crep.insert = true

7521 if dummy_node then

7522 item = dummy_node

7523 else -- TODO. if there is a node after?

7524 d = node.copy(item_base)

7525 head, item = node.insert_after(head, item, d)

7526 dummy_node = item

7527 end

7528 end

7529

7530 if crep and not crep.after and dummy_node then

7531 node.remove(head, dummy_node)

7532 dummy_node = nil

7533 end

7534

7535 if not enabled then

7536 last_match = save_last

7537 goto next

7538

7539 elseif crep and next(crep) == nil then -- = {}

7540 if step == 0 then

7541 last_match = save_last -- Optimization

7542 else

7543 last_match = utf8.offset(w, sc+step)

7544 end

7545 goto next

7546

7547 elseif crep == nil or crep.remove then

7548 node.remove(head, item)

7549 table.remove(w_nodes, sc)

7550 w = u.sub(w, 1, sc-1) .. u.sub(w, sc+1)

7551 sc = sc - 1 -- Nothing has been inserted.

7552 last_match = utf8.offset(w, sc+1+step)

7553 goto next

7554

7555 elseif crep and crep.kashida then

7556 node.set_attribute(item,

7557 Babel.attr_kashida,

7558 crep.kashida)

7559 last_match = utf8.offset(w, sc+1+step)

7560 goto next

7561

7562 elseif crep and crep.string then

7563 local str = crep.string(matches)

152

7564 if str == '' then -- Gather with nil

7565 node.remove(head, item)

7566 table.remove(w_nodes, sc)

7567 w = u.sub(w, 1, sc-1) .. u.sub(w, sc+1)

7568 sc = sc - 1 -- Nothing has been inserted.

7569 else

7570 local loop_first = true

7571 for s in string.utfvalues(str) do

7572 d = node.copy(item_base)

7573 d.char = s

7574 if loop_first then

7575 loop_first = false

7576 head, new = node.insert_before(head, item, d)

7577 if sc == 1 then

7578 word_head = head

7579 end

7580 w_nodes[sc] = d

7581 w = u.sub(w, 1, sc-1) .. u.char(s) .. u.sub(w, sc+1)

7582 else

7583 sc = sc + 1

7584 head, new = node.insert_before(head, item, d)

7585 table.insert(w_nodes, sc, new)

7586 w = u.sub(w, 1, sc-1) .. u.char(s) .. u.sub(w, sc)

7587 end

7588 if Babel.debug then

7589 print('.....', 'str')

7590 Babel.debug_hyph(w, w_nodes, sc, first, last, last_match)

7591 end

7592 end -- for

7593 node.remove(head, item)

7594 end -- if ''

7595 last_match = utf8.offset(w, sc+1+step)

7596 goto next

7597

7598 elseif mode == 1 and crep and (crep.pre or crep.no or crep.post) then

7599 d = node.new(7, 3) -- (disc, regular)

7600 d.pre = Babel.str_to_nodes(crep.pre, matches, item_base)

7601 d.post = Babel.str_to_nodes(crep.post, matches, item_base)

7602 d.replace = Babel.str_to_nodes(crep.no, matches, item_base)

7603 d.attr = item_base.attr

7604 if crep.pre == nil then -- TeXbook p96

7605 d.penalty = tovalue(crep.penalty) or tex.hyphenpenalty

7606 else

7607 d.penalty = tovalue(crep.penalty) or tex.exhyphenpenalty

7608 end

7609 placeholder = '|'

7610 head, new = node.insert_before(head, item, d)

7611

7612 elseif mode == 0 and crep and (crep.pre or crep.no or crep.post) then

7613 -- ERROR

7614

7615 elseif crep and crep.penalty then

7616 d = node.new(14, 0) -- (penalty, userpenalty)

7617 d.attr = item_base.attr

7618 d.penalty = tovalue(crep.penalty)

7619 head, new = node.insert_before(head, item, d)

7620

7621 elseif crep and crep.space then

7622 -- 655360 = 10 pt = 10 * 65536 sp

7623 d = node.new(12, 13) -- (glue, spaceskip)

7624 local quad = font.getfont(item_base.font).size or 655360

7625 node.setglue(d, tovalue(crep.space[1]) * quad,

7626 tovalue(crep.space[2]) * quad,

153

7627 tovalue(crep.space[3]) * quad)

7628 if mode == 0 then

7629 placeholder = ' '

7630 end

7631 head, new = node.insert_before(head, item, d)

7632

7633 elseif crep and crep.norule then

7634 -- 655360 = 10 pt = 10 * 65536 sp

7635 d = node.new(2, 3) -- (rule, empty) = \no*rule

7636 local quad = font.getfont(item_base.font).size or 655360

7637 d.width = tovalue(crep.norule[1]) * quad

7638 d.height = tovalue(crep.norule[2]) * quad

7639 d.depth = tovalue(crep.norule[3]) * quad

7640 head, new = node.insert_before(head, item, d)

7641

7642 elseif crep and crep.spacefactor then

7643 d = node.new(12, 13) -- (glue, spaceskip)

7644 local base_font = font.getfont(item_base.font)

7645 node.setglue(d,

7646 tovalue(crep.spacefactor[1]) * base_font.parameters['space'],

7647 tovalue(crep.spacefactor[2]) * base_font.parameters['space_stretch'],

7648 tovalue(crep.spacefactor[3]) * base_font.parameters['space_shrink'])

7649 if mode == 0 then

7650 placeholder = ' '

7651 end

7652 head, new = node.insert_before(head, item, d)

7653

7654 elseif mode == 0 and crep and crep.space then

7655 -- ERROR

7656

7657 elseif crep and crep.kern then

7658 d = node.new(13, 1) -- (kern, user)

7659 local quad = font.getfont(item_base.font).size or 655360

7660 d.attr = item_base.attr

7661 d.kern = tovalue(crep.kern) * quad

7662 head, new = node.insert_before(head, item, d)

7663

7664 elseif crep and crep.node then

7665 d = node.new(crep.node[1], crep.node[2])

7666 d.attr = item_base.attr

7667 head, new = node.insert_before(head, item, d)

7668

7669 end -- i.e., replacement cases

7670

7671 -- Shared by disc, space(factor), kern, node and penalty.

7672 if sc == 1 then

7673 word_head = head

7674 end

7675 if crep.insert then

7676 w = u.sub(w, 1, sc-1) .. placeholder .. u.sub(w, sc)

7677 table.insert(w_nodes, sc, new)

7678 last = last + 1

7679 else

7680 w_nodes[sc] = d

7681 node.remove(head, item)

7682 w = u.sub(w, 1, sc-1) .. placeholder .. u.sub(w, sc+1)

7683 end

7684

7685 last_match = utf8.offset(w, sc+1+step)

7686

7687 ::next::

7688

7689 end -- for each replacement

154

7690

7691 if Babel.show_transforms then texio.write_nl('> ' .. w) end

7692 if Babel.debug then

7693 print('.....', '/')

7694 Babel.debug_hyph(w, w_nodes, sc, first, last, last_match)

7695 end

7696

7697 if dummy_node then

7698 node.remove(head, dummy_node)

7699 dummy_node = nil

7700 end

7701

7702 end -- for match

7703

7704 end -- for patterns

7705

7706 ::next::

7707 word_head = nw

7708 end -- for substring

7709

7710 if Babel.show_transforms then texio.write_nl(string.rep('-', 32) .. '\n') end

7711 return head

7712 end

7713

7714 -- This table stores capture maps, numbered consecutively

7715 Babel.capture_maps = {}

7716

7717 function Babel.esc_hex_to_char(h)

7718 if tex.getcatcode(tonumber(h, 16)) ~= 11 and

7719 tex.getcatcode(tonumber(h, 16)) ~= 12 then

7720 return string.format([[\Uchar"%X]], tonumber(h,16))

7721 else

7722 return unicode.utf8.char(tonumber(h, 16))

7723 end

7724 end

7725

7726 -- The following functions belong to the next macro

7727 function Babel.capture_func(key, cap)

7728 local ret = "[[" .. cap:gsub('{([0-9])}', "]]..m[%1]..[[") .. "]]"

7729 local cnt

7730 local u = unicode.utf8

7731 ret = u.gsub(ret, '{(%x%x%x%x+)}', '\x01%1\x04')

7732 ret, cnt = ret:gsub('{([0-9])|([^|]+)|(.-)}', Babel.capture_func_map)

7733 ret = u.gsub(ret, '\x01(%x%x%x%x+)\x04', Babel.esc_hex_to_char)

7734 ret = ret:gsub("%[%[%]%]%.%.", '')

7735 ret = ret:gsub("%.%.%[%[%]%]", '')

7736 return key .. [[=function(m) return]] .. ret .. [[end]]

7737 end

7738

7739 function Babel.capt_map(from, mapno)

7740 return Babel.capture_maps[mapno][from] or from

7741 end

7742

7743 -- Handle the {n|abc|ABC} syntax in captures

7744 function Babel.capture_func_map(capno, from, to)

7745 local u = unicode.utf8

7746 from = u.gsub(from, '\x01(%x%x%x%x+)\x04',

7747 function (n)

7748 return u.char(tonumber(n, 16))

7749 end)

7750 to = u.gsub(to, '\x01(%x%x%x%x+)\x04',

7751 function (n)

7752 return u.char(tonumber(n, 16))

155

7753 end)

7754 local froms = {}

7755 for s in string.utfcharacters(from) do

7756 table.insert(froms, s)

7757 end

7758 local cnt = 1

7759 table.insert(Babel.capture_maps, {})

7760 local mlen = table.getn(Babel.capture_maps)

7761 for s in string.utfcharacters(to) do

7762 Babel.capture_maps[mlen][froms[cnt]] = s

7763 cnt = cnt + 1

7764 end

7765 return "]]..Babel.capt_map(m[" .. capno .. "]," ..

7766 (mlen) .. ").." .. "[["

7767 end

7768

7769 -- Create/Extend reversed sorted list of kashida weights:

7770 function Babel.capture_kashida(key, wt)

7771 wt = tonumber(wt)

7772 if Babel.kashida_wts then

7773 for p, q in ipairs(Babel.kashida_wts) do

7774 if wt == q then

7775 break

7776 elseif wt > q then

7777 table.insert(Babel.kashida_wts, p, wt)

7778 break

7779 elseif table.getn(Babel.kashida_wts) == p then

7780 table.insert(Babel.kashida_wts, wt)

7781 end

7782 end

7783 else

7784 Babel.kashida_wts = { wt }

7785 end

7786 return 'kashida = ' .. wt

7787 end

7788

7789 function Babel.capture_node(id, subtype)

7790 local sbt = 0

7791 for k, v in pairs(node.subtypes(id)) do

7792 if v == subtype then sbt = k end

7793 end

7794 return 'node = {' .. node.id(id) .. ', ' .. sbt .. '}'

7795 end

7796

7797 -- Experimental: applies prehyphenation transforms to a string (letters

7798 -- and spaces).

7799 function Babel.string_prehyphenation(str, locale)

7800 local n, head, last, res

7801 head = node.new(8, 0) -- dummy (hack just to start)

7802 last = head

7803 for s in string.utfvalues(str) do

7804 if s == 20 then

7805 n = node.new(12, 0)

7806 else

7807 n = node.new(29, 0)

7808 n.char = s

7809 end

7810 node.set_attribute(n, Babel.attr_locale, locale)

7811 last.next = n

7812 last = n

7813 end

7814 head = Babel.hyphenate_replace(head, 0)

7815 res = ''

156

7816 for n in node.traverse(head) do

7817 if n.id == 12 then

7818 res = res .. ' '

7819 elseif n.id == 29 then

7820 res = res .. unicode.utf8.char(n.char)

7821 end

7822 end

7823 tex.print(res)

7824 end

7825 〈/transforms〉

10.14.Lua: Auto bidi with basic and basic-r

The file babel-data-bidi.lua currently only contains data. It is a large and boring file and it is not

shown here (see the generated file), but here is a sample:

% [0x25]={d='et'},

% [0x26]={d='on'},

% [0x27]={d='on'},

% [0x28]={d='on', m=0x29},

% [0x29]={d='on', m=0x28},

% [0x2A]={d='on'},

% [0x2B]={d='es'},

% [0x2C]={d='cs'},

%

For the meaning of these codes, see the Unicode standard.

Now the basic-r bidi mode. One of the aims is to implement a fast and simple bidi algorithm, with

a single loop. I managed to do it for R texts, with a second smaller loop for a special case. The code is

still somewhat chaotic, but its behavior is essentially correct. I cannot resist copying the following

text from Emacs bidi.c (which also attempts to implement the bidi algorithm with a single loop):

Arrrgh!! The UAX#9 algorithm is too deeply entrenched in the assumption of batch-style

processing [...]. May the fleas of a thousand camels infest the armpits of those who design

supposedly general-purpose algorithms by looking at their own implementations, and fail to

consider other possible implementations!

Well, it took me some time to guess what the batch rules in UAX#9 actually mean (in other word,

what they do and why, and not only how), but I think (or I hope) I’ve managed to understand them.

In some sense, there are two bidi modes, one for numbers, and the other for text. Furthermore,

setting just the direction in R text is not enough, because there are actually two R modes (set

explicitly in Unicode with RLM and ALM). In babel the dir is set by a higher protocol based on the

language/script, which in turn sets the correct dir (<l>, <r> or <al>).

From UAX#9: “Where available, markup should be used instead of the explicit formatting

characters”. So, this simple version just ignores formatting characters. Actually, most of that annex is

devoted to how to handle them.

BD14-BD16 are not implemented. Unicode (and the W3C) are making a great effort to deal with

some special problematic cases in “streamed” plain text. I don’t think this is the way to go – particular

issues should be fixed by a high level interface taking into account the needs of the document. And

here is where luatex excels, because everything related to bidi writing is under our control.

7826 〈∗basic-r〉
7827 Babel.bidi_enabled = true

7828

7829 require('babel-data-bidi.lua')

7830

7831 local characters = Babel.characters

7832 local ranges = Babel.ranges

7833

7834 local DIR = node.id("dir")

7835

7836 local function dir_mark(head, from, to, outer)

7837 dir = (outer == 'r') and 'TLT' or 'TRT' -- i.e., reverse

7838 local d = node.new(DIR)

157

7839 d.dir = '+' .. dir

7840 node.insert_before(head, from, d)

7841 d = node.new(DIR)

7842 d.dir = '-' .. dir

7843 node.insert_after(head, to, d)

7844 end

7845

7846 function Babel.bidi(head, ispar)

7847 local first_n, last_n -- first and last char with nums

7848 local last_es -- an auxiliary 'last' used with nums

7849 local first_d, last_d -- first and last char in L/R block

7850 local dir, dir_real

Next also depends on script/lang (<al>/<r>). To be set by babel. tex.pardir is dangerous, could be

(re)set but it should be changed only in vmode. There are two strong’s – strong = l/al/r and

strong_lr = l/r (there must be a better way):

7851 local strong = ('TRT' == tex.pardir) and 'r' or 'l'

7852 local strong_lr = (strong == 'l') and 'l' or 'r'

7853 local outer = strong

7854

7855 local new_dir = false

7856 local first_dir = false

7857 local inmath = false

7858

7859 local last_lr

7860

7861 local type_n = ''

7862

7863 for item in node.traverse(head) do

7864

7865 -- three cases: glyph, dir, otherwise

7866 if item.id == node.id'glyph'

7867 or (item.id == 7 and item.subtype == 2) then

7868

7869 local itemchar

7870 if item.id == 7 and item.subtype == 2 then

7871 itemchar = item.replace.char

7872 else

7873 itemchar = item.char

7874 end

7875 local chardata = characters[itemchar]

7876 dir = chardata and chardata.d or nil

7877 if not dir then

7878 for nn, et in ipairs(ranges) do

7879 if itemchar < et[1] then

7880 break

7881 elseif itemchar <= et[2] then

7882 dir = et[3]

7883 break

7884 end

7885 end

7886 end

7887 dir = dir or 'l'

7888 if inmath then dir = ('TRT' == tex.mathdir) and 'r' or 'l' end

Next is based on the assumption babel sets the language and switches the script with its dir. We

treat a language block as a separate Unicode sequence. The following piece of code is executed at the

first glyph after a ‘dir’ node. We don’t know the current language until then. This is not exactly true,

as the math mode may insert explicit dirs in the node list, so, for the moment there is a hack by brute

force (just above).

7889 if new_dir then

7890 attr_dir = 0

7891 for at in node.traverse(item.attr) do

7892 if at.number == Babel.attr_dir then

158

7893 attr_dir = at.value & 0x3

7894 end

7895 end

7896 if attr_dir == 1 then

7897 strong = 'r'

7898 elseif attr_dir == 2 then

7899 strong = 'al'

7900 else

7901 strong = 'l'

7902 end

7903 strong_lr = (strong == 'l') and 'l' or 'r'

7904 outer = strong_lr

7905 new_dir = false

7906 end

7907

7908 if dir == 'nsm' then dir = strong end -- W1

Numbers. The dual <al>/<r> system for R is somewhat cumbersome.

7909 dir_real = dir -- We need dir_real to set strong below

7910 if dir == 'al' then dir = 'r' end -- W3

By W2, there are no <en> <et> <es> if strong == 〈al〉, only <an>. Therefore, there are not <et en>
nor <en et>, W5 can be ignored, and W6 applied:

7911 if strong == 'al' then

7912 if dir == 'en' then dir = 'an' end -- W2

7913 if dir == 'et' or dir == 'es' then dir = 'on' end -- W6

7914 strong_lr = 'r' -- W3

7915 end

Once finished the basic setup for glyphs, consider the two other cases: dir node and the rest.

7916 elseif item.id == node.id'dir' and not inmath then

7917 new_dir = true

7918 dir = nil

7919 elseif item.id == node.id'math' then

7920 inmath = (item.subtype == 0)

7921 else

7922 dir = nil -- Not a char

7923 end

Numbers in R mode. A sequence of <en>, <et>, <an>, <es> and <cs> is typeset (with some rules) in L

mode. We store the starting and ending points, and only when anything different is found (including

nil, i.e., a non-char), the textdir is set. This means you cannot insert, say, a whatsit, but this is what I

would expect (with luacolor you may colorize some digits). Anyway, this behavior could be changed

with a switch in the future. Note in the first branch only <an> is relevant if <al>.

7924 if dir == 'en' or dir == 'an' or dir == 'et' then

7925 if dir ~= 'et' then

7926 type_n = dir

7927 end

7928 first_n = first_n or item

7929 last_n = last_es or item

7930 last_es = nil

7931 elseif dir == 'es' and last_n then -- W3+W6

7932 last_es = item

7933 elseif dir == 'cs' then -- it's right - do nothing

7934 elseif first_n then -- & if dir = any but en, et, an, es, cs, inc nil

7935 if strong_lr == 'r' and type_n ~= '' then

7936 dir_mark(head, first_n, last_n, 'r')

7937 elseif strong_lr == 'l' and first_d and type_n == 'an' then

7938 dir_mark(head, first_n, last_n, 'r')

7939 dir_mark(head, first_d, last_d, outer)

7940 first_d, last_d = nil, nil

7941 elseif strong_lr == 'l' and type_n ~= '' then

7942 last_d = last_n

7943 end

159

7944 type_n = ''

7945 first_n, last_n = nil, nil

7946 end

R text in L, or L text in R. Order of dir_ mark’s are relevant: d goes outside n, and therefore it’s

emitted after. See dir_mark to understand why (but is the nesting actually necessary or is a flat dir

structure enough?). Only L, R (and AL) chars are taken into account – everything else, including

spaces, whatsits, etc., are ignored:

7947 if dir == 'l' or dir == 'r' then

7948 if dir ~= outer then

7949 first_d = first_d or item

7950 last_d = item

7951 elseif first_d and dir ~= strong_lr then

7952 dir_mark(head, first_d, last_d, outer)

7953 first_d, last_d = nil, nil

7954 end

7955 end

Mirroring. Each chunk of text in a certain language is considered a “closed” sequence. If <r on r>

and <l on l>, it’s clearly <r> and <l>, resptly, but with other combinations depends on outer. From all

these, we select only those resolving <on>→ <r>. At the beginning (when last_lr is nil) of an R text,

they are mirrored directly. Numbers in R mode are processed. It should not be done, but it doesn’t

hurt.

7956 if dir and not last_lr and dir ~= 'l' and outer == 'r' then

7957 item.char = characters[item.char] and

7958 characters[item.char].m or item.char

7959 elseif (dir or new_dir) and last_lr ~= item then

7960 local mir = outer .. strong_lr .. (dir or outer)

7961 if mir == 'rrr' or mir == 'lrr' or mir == 'rrl' or mir == 'rlr' then

7962 for ch in node.traverse(node.next(last_lr)) do

7963 if ch == item then break end

7964 if ch.id == node.id'glyph' and characters[ch.char] then

7965 ch.char = characters[ch.char].m or ch.char

7966 end

7967 end

7968 end

7969 end

Save some values for the next iteration. If the current node is ‘dir’, open a new sequence. Since dir

could be changed, strong is set with its real value (dir_real).

7970 if dir == 'l' or dir == 'r' then

7971 last_lr = item

7972 strong = dir_real -- Don't search back - best save now

7973 strong_lr = (strong == 'l') and 'l' or 'r'

7974 elseif new_dir then

7975 last_lr = nil

7976 end

7977 end

Mirror the last chars if they are no directed. And make sure any open block is closed, too.

7978 if last_lr and outer == 'r' then

7979 for ch in node.traverse_id(node.id'glyph', node.next(last_lr)) do

7980 if characters[ch.char] then

7981 ch.char = characters[ch.char].m or ch.char

7982 end

7983 end

7984 end

7985 if first_n then

7986 dir_mark(head, first_n, last_n, outer)

7987 end

7988 if first_d then

7989 dir_mark(head, first_d, last_d, outer)

7990 end

160

In boxes, the dir node could be added before the original head, so the actual head is the previous

node.

7991 return node.prev(head) or head

7992 end

7993 〈/basic-r〉

And here the Lua code for bidi=basic:

7994 〈∗basic〉
7995 -- e.g., Babel.fontmap[1][<prefontid>]=<dirfontid>

7996

7997 Babel.fontmap = Babel.fontmap or {}

7998 Babel.fontmap[0] = {} -- l

7999 Babel.fontmap[1] = {} -- r

8000 Babel.fontmap[2] = {} -- al/an

8001

8002 -- To cancel mirroring. Also OML, OMS, U?

8003 Babel.symbol_fonts = Babel.symbol_fonts or {}

8004 Babel.symbol_fonts[font.id('tenln')] = true

8005 Babel.symbol_fonts[font.id('tenlnw')] = true

8006 Babel.symbol_fonts[font.id('tencirc')] = true

8007 Babel.symbol_fonts[font.id('tencircw')] = true

8008

8009 Babel.bidi_enabled = true

8010 Babel.mirroring_enabled = true

8011

8012 require('babel-data-bidi.lua')

8013

8014 local characters = Babel.characters

8015 local ranges = Babel.ranges

8016

8017 local DIR = node.id('dir')

8018 local GLYPH = node.id('glyph')

8019

8020 local function insert_implicit(head, state, outer)

8021 local new_state = state

8022 if state.sim and state.eim and state.sim ~= state.eim then

8023 dir = ((outer == 'r') and 'TLT' or 'TRT') -- i.e., reverse

8024 local d = node.new(DIR)

8025 d.dir = '+' .. dir

8026 node.insert_before(head, state.sim, d)

8027 local d = node.new(DIR)

8028 d.dir = '-' .. dir

8029 node.insert_after(head, state.eim, d)

8030 end

8031 new_state.sim, new_state.eim = nil, nil

8032 return head, new_state

8033 end

8034

8035 local function insert_numeric(head, state)

8036 local new

8037 local new_state = state

8038 if state.san and state.ean and state.san ~= state.ean then

8039 local d = node.new(DIR)

8040 d.dir = '+TLT'

8041 _, new = node.insert_before(head, state.san, d)

8042 if state.san == state.sim then state.sim = new end

8043 local d = node.new(DIR)

8044 d.dir = '-TLT'

8045 _, new = node.insert_after(head, state.ean, d)

8046 if state.ean == state.eim then state.eim = new end

8047 end

8048 new_state.san, new_state.ean = nil, nil

8049 return head, new_state

161

8050 end

8051

8052 local function glyph_not_symbol_font(node)

8053 if node.id == GLYPH then

8054 return not Babel.symbol_fonts[node.font]

8055 else

8056 return false

8057 end

8058 end

8059

8060 -- TODO - \hbox with an explicit dir can lead to wrong results

8061 -- <R \hbox dir TLT{<R>}> and <L \hbox dir TRT{<L>}>. A small attempt

8062 -- was made to improve the situation, but the problem is the 3-dir

8063 -- model in babel/Unicode and the 2-dir model in LuaTeX don't fit

8064 -- well.

8065

8066 function Babel.bidi(head, ispar, hdir)

8067 local d -- d is used mainly for computations in a loop

8068 local prev_d = ''

8069 local new_d = false

8070

8071 local nodes = {}

8072 local outer_first = nil

8073 local inmath = false

8074

8075 local glue_d = nil

8076 local glue_i = nil

8077

8078 local has_en = false

8079 local first_et = nil

8080

8081 local has_hyperlink = false

8082

8083 local ATDIR = Babel.attr_dir

8084 local attr_d, temp

8085 local locale_d

8086

8087 local save_outer

8088 local locale_d = node.get_attribute(head, ATDIR)

8089 if locale_d then

8090 locale_d = locale_d & 0x3

8091 save_outer = (locale_d == 0 and 'l') or

8092 (locale_d == 1 and 'r') or

8093 (locale_d == 2 and 'al')

8094 elseif ispar then -- Or error? Shouldn't happen

8095 -- when the callback is called, we are just _after_ the box,

8096 -- and the textdir is that of the surrounding text

8097 save_outer = ('TRT' == tex.pardir) and 'r' or 'l'

8098 else -- Empty box

8099 save_outer = ('TRT' == hdir) and 'r' or 'l'

8100 end

8101 local outer = save_outer

8102 local last = outer

8103 -- 'al' is only taken into account in the first, current loop

8104 if save_outer == 'al' then save_outer = 'r' end

8105

8106 local fontmap = Babel.fontmap

8107

8108 for item in node.traverse(head) do

8109

8110 -- Mask: DxxxPPTT (Done, Pardir [0-2], Textdir [0-2])

8111 locale_d = node.get_attribute(item, ATDIR)

8112 node.set_attribute(item, ATDIR, 0x80)

162

8113

8114 -- In what follows, #node is the last (previous) node, because the

8115 -- current one is not added until we start processing the neutrals.

8116 -- three cases: glyph, dir, otherwise

8117 if glyph_not_symbol_font(item)

8118 or (item.id == 7 and item.subtype == 2) then

8119

8120 if locale_d == 0x80 then goto nextnode end

8121

8122 local d_font = nil

8123 local item_r

8124 if item.id == 7 and item.subtype == 2 then

8125 item_r = item.replace -- automatic discs have just 1 glyph

8126 else

8127 item_r = item

8128 end

8129

8130 local chardata = characters[item_r.char]

8131 d = chardata and chardata.d or nil

8132 if not d or d == 'nsm' then

8133 for nn, et in ipairs(ranges) do

8134 if item_r.char < et[1] then

8135 break

8136 elseif item_r.char <= et[2] then

8137 if not d then d = et[3]

8138 elseif d == 'nsm' then d_font = et[3]

8139 end

8140 break

8141 end

8142 end

8143 end

8144 d = d or 'l'

8145

8146 -- A short 'pause' in bidi for mapfont

8147 -- %%%% TODO. move if fontmap here

8148 d_font = d_font or d

8149 d_font = (d_font == 'l' and 0) or

8150 (d_font == 'nsm' and 0) or

8151 (d_font == 'r' and 1) or

8152 (d_font == 'al' and 2) or

8153 (d_font == 'an' and 2) or nil

8154 if d_font and fontmap and fontmap[d_font][item_r.font] then

8155 item_r.font = fontmap[d_font][item_r.font]

8156 end

8157

8158 if new_d then

8159 table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})

8160 if inmath then

8161 attr_d = 0

8162 else

8163 attr_d = locale_d & 0x3

8164 end

8165 if attr_d == 1 then

8166 outer_first = 'r'

8167 last = 'r'

8168 elseif attr_d == 2 then

8169 outer_first = 'r'

8170 last = 'al'

8171 else

8172 outer_first = 'l'

8173 last = 'l'

8174 end

8175 outer = last

163

8176 has_en = false

8177 first_et = nil

8178 new_d = false

8179 end

8180

8181 if glue_d then

8182 if (d == 'l' and 'l' or 'r') ~= glue_d then

8183 table.insert(nodes, {glue_i, 'on', nil})

8184 end

8185 glue_d = nil

8186 glue_i = nil

8187 end

8188

8189 elseif item.id == DIR then

8190 d = nil

8191 new_d = true

8192

8193 elseif item.id == node.id'glue' and item.subtype == 13 then

8194 glue_d = d

8195 glue_i = item

8196 d = nil

8197

8198 elseif item.id == node.id'math' then

8199 inmath = (item.subtype == 0)

8200

8201 elseif item.id == 8 and item.subtype == 19 then

8202 has_hyperlink = true

8203

8204 else

8205 d = nil

8206 end

8207

8208 -- AL <= EN/ET/ES -- W2 + W3 + W6

8209 if last == 'al' and d == 'en' then

8210 d = 'an' -- W3

8211 elseif last == 'al' and (d == 'et' or d == 'es') then

8212 d = 'on' -- W6

8213 end

8214

8215 -- EN + CS/ES + EN -- W4

8216 if d == 'en' and #nodes >= 2 then

8217 if (nodes[#nodes][2] == 'es' or nodes[#nodes][2] == 'cs')

8218 and nodes[#nodes-1][2] == 'en' then

8219 nodes[#nodes][2] = 'en'

8220 end

8221 end

8222

8223 -- AN + CS + AN -- W4 too, because uax9 mixes both cases

8224 if d == 'an' and #nodes >= 2 then

8225 if (nodes[#nodes][2] == 'cs')

8226 and nodes[#nodes-1][2] == 'an' then

8227 nodes[#nodes][2] = 'an'

8228 end

8229 end

8230

8231 -- ET/EN -- W5 + W7->l / W6->on

8232 if d == 'et' then

8233 first_et = first_et or (#nodes + 1)

8234 elseif d == 'en' then

8235 has_en = true

8236 first_et = first_et or (#nodes + 1)

8237 elseif first_et then -- d may be nil here !

8238 if has_en then

164

8239 if last == 'l' then

8240 temp = 'l' -- W7

8241 else

8242 temp = 'en' -- W5

8243 end

8244 else

8245 temp = 'on' -- W6

8246 end

8247 for e = first_et, #nodes do

8248 if glyph_not_symbol_font(nodes[e][1]) then nodes[e][2] = temp end

8249 end

8250 first_et = nil

8251 has_en = false

8252 end

8253

8254 -- Force mathdir in math if ON (currently works as expected only

8255 -- with 'l')

8256

8257 if inmath and d == 'on' then

8258 d = ('TRT' == tex.mathdir) and 'r' or 'l'

8259 end

8260

8261 if d then

8262 if d == 'al' then

8263 d = 'r'

8264 last = 'al'

8265 elseif d == 'l' or d == 'r' then

8266 last = d

8267 end

8268 prev_d = d

8269 table.insert(nodes, {item, d, outer_first})

8270 end

8271

8272 outer_first = nil

8273

8274 ::nextnode::

8275

8276 end -- for each node

8277

8278 -- TODO -- repeated here in case EN/ET is the last node. Find a

8279 -- better way of doing things:

8280 if first_et then -- dir may be nil here !

8281 if has_en then

8282 if last == 'l' then

8283 temp = 'l' -- W7

8284 else

8285 temp = 'en' -- W5

8286 end

8287 else

8288 temp = 'on' -- W6

8289 end

8290 for e = first_et, #nodes do

8291 if glyph_not_symbol_font(nodes[e][1]) then nodes[e][2] = temp end

8292 end

8293 end

8294

8295 -- dummy node, to close things

8296 table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})

8297

8298 --------------- NEUTRAL -----------------

8299

8300 outer = save_outer

8301 last = outer

165

8302

8303 local first_on = nil

8304

8305 for q = 1, #nodes do

8306 local item

8307

8308 local outer_first = nodes[q][3]

8309 outer = outer_first or outer

8310 last = outer_first or last

8311

8312 local d = nodes[q][2]

8313 if d == 'an' or d == 'en' then d = 'r' end

8314 if d == 'cs' or d == 'et' or d == 'es' then d = 'on' end --- W6

8315

8316 if d == 'on' then

8317 first_on = first_on or q

8318 elseif first_on then

8319 if last == d then

8320 temp = d

8321 else

8322 temp = outer

8323 end

8324 for r = first_on, q - 1 do

8325 nodes[r][2] = temp

8326 item = nodes[r][1] -- MIRRORING

8327 if Babel.mirroring_enabled and glyph_not_symbol_font(item)

8328 and temp == 'r' and characters[item.char] then

8329 local font_mode = ''

8330 if item.font > 0 and font.fonts[item.font].properties then

8331 font_mode = font.fonts[item.font].properties.mode

8332 end

8333 if font_mode ~= 'harf' and font_mode ~= 'plug' then

8334 item.char = characters[item.char].m or item.char

8335 end

8336 end

8337 end

8338 first_on = nil

8339 end

8340

8341 if d == 'r' or d == 'l' then last = d end

8342 end

8343

8344 -------------- IMPLICIT, REORDER ----------------

8345

8346 outer = save_outer

8347 last = outer

8348

8349 local state = {}

8350 state.has_r = false

8351

8352 for q = 1, #nodes do

8353

8354 local item = nodes[q][1]

8355

8356 outer = nodes[q][3] or outer

8357

8358 local d = nodes[q][2]

8359

8360 if d == 'nsm' then d = last end -- W1

8361 if d == 'en' then d = 'an' end

8362 local isdir = (d == 'r' or d == 'l')

8363

8364 if outer == 'l' and d == 'an' then

166

8365 state.san = state.san or item

8366 state.ean = item

8367 elseif state.san then

8368 head, state = insert_numeric(head, state)

8369 end

8370

8371 if outer == 'l' then

8372 if d == 'an' or d == 'r' then -- im -> implicit

8373 if d == 'r' then state.has_r = true end

8374 state.sim = state.sim or item

8375 state.eim = item

8376 elseif d == 'l' and state.sim and state.has_r then

8377 head, state = insert_implicit(head, state, outer)

8378 elseif d == 'l' then

8379 state.sim, state.eim, state.has_r = nil, nil, false

8380 end

8381 else

8382 if d == 'an' or d == 'l' then

8383 if nodes[q][3] then -- nil except after an explicit dir

8384 state.sim = item -- so we move sim 'inside' the group

8385 else

8386 state.sim = state.sim or item

8387 end

8388 state.eim = item

8389 elseif d == 'r' and state.sim then

8390 head, state = insert_implicit(head, state, outer)

8391 elseif d == 'r' then

8392 state.sim, state.eim = nil, nil

8393 end

8394 end

8395

8396 if isdir then

8397 last = d -- Don't search back - best save now

8398 elseif d == 'on' and state.san then

8399 state.san = state.san or item

8400 state.ean = item

8401 end

8402

8403 end

8404

8405 head = node.prev(head) or head

8406 % \end{macrocode}

8407 %

8408 % Now direction nodes has been distributed with relation to characters

8409 % and spaces, we need to take into account \TeX\-specific elements in

8410 % the node list, to move them at an appropriate place. Firstly, with

8411 % hyperlinks. Secondly, we avoid them between penalties and spaces, so

8412 % that the latter are still discardable.

8413 %

8414 % \begin{macrocode}

8415 --- FIXES ---

8416 if has_hyperlink then

8417 local flag, linking = 0, 0

8418 for item in node.traverse(head) do

8419 if item.id == DIR then

8420 if item.dir == '+TRT' or item.dir == '+TLT' then

8421 flag = flag + 1

8422 elseif item.dir == '-TRT' or item.dir == '-TLT' then

8423 flag = flag - 1

8424 end

8425 elseif item.id == 8 and item.subtype == 19 then

8426 linking = flag

8427 elseif item.id == 8 and item.subtype == 20 then

167

8428 if linking > 0 then

8429 if item.prev.id == DIR and

8430 (item.prev.dir == '-TRT' or item.prev.dir == '-TLT') then

8431 d = node.new(DIR)

8432 d.dir = item.prev.dir

8433 node.remove(head, item.prev)

8434 node.insert_after(head, item, d)

8435 end

8436 end

8437 linking = 0

8438 end

8439 end

8440 end

8441

8442 for item in node.traverse_id(10, head) do

8443 local p = item

8444 local flag = false

8445 while p.prev and p.prev.id == 14 do

8446 flag = true

8447 p = p.prev

8448 end

8449 if flag then

8450 node.insert_before(head, p, node.copy(item))

8451 node.remove(head,item)

8452 end

8453 end

8454

8455 return head

8456 end

8457 function Babel.unset_atdir(head)

8458 local ATDIR = Babel.attr_dir

8459 for item in node.traverse(head) do

8460 node.set_attribute(item, ATDIR, 0x80)

8461 end

8462 return head

8463 end

8464 〈/basic〉

11. Data for CJK

It is a boring file and it is not shown here (see the generated file), but here is a sample:

% [0x0021]={c='ex'},

% [0x0024]={c='pr'},

% [0x0025]={c='po'},

% [0x0028]={c='op'},

% [0x0029]={c='cp'},

% [0x002B]={c='pr'},

%

For the meaning of these codes, see the Unicode standard.

12. The ‘nil’ language

This ‘language’ does nothing, except setting the hyphenation patterns to nohyphenation. For this

language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than once, checking the

category code of the @ sign, etc.

8465 〈∗nil〉
8466 \ProvidesLanguage{nil}[<@date@> v<@version@> Nil language]

8467 \LdfInit{nil}{datenil}

168

When this file is read as an option, i.e., by the \usepackage command, nil could be an ‘unknown’

language in which case we have to make it known.

8468 \ifx\l@nil\@undefined

8469 \newlanguage\l@nil

8470 \@namedef{bbl@hyphendata@\the\l@nil}{{}{}}% Remove warning

8471 \let\bbl@elt\relax

8472 \edef\bbl@languages{% Add it to the list of languages

8473 \bbl@languages\bbl@elt{nil}{\the\l@nil}{}{}}

8474 \fi

This macro is used to store the values of the hyphenation parameters \lefthyphenmin and

\righthyphenmin.

8475 \providehyphenmins{\CurrentOption}{\m@ne\m@ne}

The next step consists of defining commands to switch to (and from) the ‘nil’ language.

\captionnil

\datenil

8476 \let\captionsnil\@empty

8477 \let\datenil\@empty

There is no locale file for this pseudo-language, so the corresponding fields are defined here.

8478 \def\bbl@inidata@nil{%

8479 \bbl@elt{identification}{tag.ini}{und}%

8480 \bbl@elt{identification}{load.level}{0}%

8481 \bbl@elt{identification}{charset}{utf8}%

8482 \bbl@elt{identification}{version}{1.0}%

8483 \bbl@elt{identification}{date}{2022-05-16}%

8484 \bbl@elt{identification}{name.local}{nil}%

8485 \bbl@elt{identification}{name.english}{nil}%

8486 \bbl@elt{identification}{name.babel}{nil}%

8487 \bbl@elt{identification}{tag.bcp47}{und}%

8488 \bbl@elt{identification}{language.tag.bcp47}{und}%

8489 \bbl@elt{identification}{tag.opentype}{dflt}%

8490 \bbl@elt{identification}{script.name}{Latin}%

8491 \bbl@elt{identification}{script.tag.bcp47}{Latn}%

8492 \bbl@elt{identification}{script.tag.opentype}{DFLT}%

8493 \bbl@elt{identification}{level}{1}%

8494 \bbl@elt{identification}{encodings}{}%

8495 \bbl@elt{identification}{derivate}{no}}

8496 \@namedef{bbl@tbcp@nil}{und}

8497 \@namedef{bbl@lbcp@nil}{und}

8498 \@namedef{bbl@casing@nil}{und}

8499 \@namedef{bbl@lotf@nil}{dflt}

8500 \@namedef{bbl@elname@nil}{nil}

8501 \@namedef{bbl@lname@nil}{nil}

8502 \@namedef{bbl@esname@nil}{Latin}

8503 \@namedef{bbl@sname@nil}{Latin}

8504 \@namedef{bbl@sbcp@nil}{Latn}

8505 \@namedef{bbl@sotf@nil}{latn}

The macro \ldf@finish takes care of looking for a configuration file, setting the main language to

be switched on at \begin{document} and resetting the category code of @ to its original value.

8506 \ldf@finish{nil}

8507 〈/nil〉

13. Calendars

The code for specific calendars are placed in the specific files, loaded when requested by an ini file

in the identification section with require.calendars.

Start with function to compute the Julian day. It’s based on the little library calendar.js, by John

Walker, in the public domain.

169

8508 〈〈∗Compute Julian day〉〉 ≡
8509 \def\bbl@fpmod#1#2{(#1-#2*floor(#1/#2))}

8510 \def\bbl@cs@gregleap#1{%

8511 (\bbl@fpmod{#1}{4} == 0) &&

8512 (!((\bbl@fpmod{#1}{100} == 0) && (\bbl@fpmod{#1}{400} != 0)))}

8513 \def\bbl@cs@jd#1#2#3{% year, month, day

8514 \fpeval{ 1721424.5 + (365 * (#1 - 1)) +

8515 floor((#1 - 1) / 4) + (-floor((#1 - 1) / 100)) +

8516 floor((#1 - 1) / 400) + floor((((367 * #2) - 362) / 12) +

8517 ((#2 <= 2) ? 0 : (\bbl@cs@gregleap{#1} ? -1 : -2)) + #3) }}

8518 〈〈/Compute Julian day〉〉

13.1. Islamic

The code for the Civil calendar is based on it, too.

8519 〈∗ca-islamic〉
8520 <@Compute Julian day@>

8521 % == islamic (default)

8522 % Not yet implemented

8523 \def\bbl@ca@islamic#1-#2-#3\@@#4#5#6{}

The Civil calendar.

8524 \def\bbl@cs@isltojd#1#2#3{ % year, month, day

8525 ((#3 + ceil(29.5 * (#2 - 1)) +

8526 (#1 - 1) * 354 + floor((3 + (11 * #1)) / 30) +

8527 1948439.5) - 1) }

8528 \@namedef{bbl@ca@islamic-civil++}{\bbl@ca@islamicvl@x{+2}}

8529 \@namedef{bbl@ca@islamic-civil+}{\bbl@ca@islamicvl@x{+1}}

8530 \@namedef{bbl@ca@islamic-civil}{\bbl@ca@islamicvl@x{}}

8531 \@namedef{bbl@ca@islamic-civil-}{\bbl@ca@islamicvl@x{-1}}

8532 \@namedef{bbl@ca@islamic-civil--}{\bbl@ca@islamicvl@x{-2}}

8533 \def\bbl@ca@islamicvl@x#1#2-#3-#4\@@#5#6#7{%

8534 \edef\bbl@tempa{%

8535 \fpeval{ floor(\bbl@cs@jd{#2}{#3}{#4})+0.5 #1}}%

8536 \edef#5{%

8537 \fpeval{ floor(((30*(\bbl@tempa-1948439.5)) + 10646)/10631) }}%

8538 \edef#6{\fpeval{

8539 min(12,ceil((\bbl@tempa-(29+\bbl@cs@isltojd{#5}{1}{1}))/29.5)+1) }}%

8540 \edef#7{\fpeval{ \bbl@tempa - \bbl@cs@isltojd{#5}{#6}{1} + 1} }}

The Umm al-Qura calendar, used mainly in Saudi Arabia, is based onmoment-hijri, by Abdullah

Alsigar (license MIT).

Since the main aim is to provide a suitable \today, and maybe some close dates, data just covers

Hijri∼1435/∼1460 (Gregorian∼2014/∼2038).

8541 \def\bbl@cs@umalqura@data{56660, 56690,56719,56749,56778,56808,%

8542 56837,56867,56897,56926,56956,56985,57015,57044,57074,57103,%

8543 57133,57162,57192,57221,57251,57280,57310,57340,57369,57399,%

8544 57429,57458,57487,57517,57546,57576,57605,57634,57664,57694,%

8545 57723,57753,57783,57813,57842,57871,57901,57930,57959,57989,%

8546 58018,58048,58077,58107,58137,58167,58196,58226,58255,58285,%

8547 58314,58343,58373,58402,58432,58461,58491,58521,58551,58580,%

8548 58610,58639,58669,58698,58727,58757,58786,58816,58845,58875,%

8549 58905,58934,58964,58994,59023,59053,59082,59111,59141,59170,%

8550 59200,59229,59259,59288,59318,59348,59377,59407,59436,59466,%

8551 59495,59525,59554,59584,59613,59643,59672,59702,59731,59761,%

8552 59791,59820,59850,59879,59909,59939,59968,59997,60027,60056,%

8553 60086,60115,60145,60174,60204,60234,60264,60293,60323,60352,%

8554 60381,60411,60440,60469,60499,60528,60558,60588,60618,60648,%

8555 60677,60707,60736,60765,60795,60824,60853,60883,60912,60942,%

8556 60972,61002,61031,61061,61090,61120,61149,61179,61208,61237,%

8557 61267,61296,61326,61356,61385,61415,61445,61474,61504,61533,%

8558 61563,61592,61621,61651,61680,61710,61739,61769,61799,61828,%

8559 61858,61888,61917,61947,61976,62006,62035,62064,62094,62123,%

170

8560 62153,62182,62212,62242,62271,62301,62331,62360,62390,62419,%

8561 62448,62478,62507,62537,62566,62596,62625,62655,62685,62715,%

8562 62744,62774,62803,62832,62862,62891,62921,62950,62980,63009,%

8563 63039,63069,63099,63128,63157,63187,63216,63246,63275,63305,%

8564 63334,63363,63393,63423,63453,63482,63512,63541,63571,63600,%

8565 63630,63659,63689,63718,63747,63777,63807,63836,63866,63895,%

8566 63925,63955,63984,64014,64043,64073,64102,64131,64161,64190,%

8567 64220,64249,64279,64309,64339,64368,64398,64427,64457,64486,%

8568 64515,64545,64574,64603,64633,64663,64692,64722,64752,64782,%

8569 64811,64841,64870,64899,64929,64958,64987,65017,65047,65076,%

8570 65106,65136,65166,65195,65225,65254,65283,65313,65342,65371,%

8571 65401,65431,65460,65490,65520}

8572 \@namedef{bbl@ca@islamic-umalqura+}{\bbl@ca@islamcuqr@x{+1}}

8573 \@namedef{bbl@ca@islamic-umalqura}{\bbl@ca@islamcuqr@x{}}

8574 \@namedef{bbl@ca@islamic-umalqura-}{\bbl@ca@islamcuqr@x{-1}}

8575 \def\bbl@ca@islamcuqr@x#1#2-#3-#4\@@#5#6#7{%

8576 \ifnum#2>2014 \ifnum#2<2038

8577 \bbl@afterfi\expandafter\@gobble

8578 \fi\fi

8579 {\bbl@error{year-out-range}{2014-2038}{}{}}%

8580 \edef\bbl@tempd{\fpeval{ % (Julian) day

8581 \bbl@cs@jd{#2}{#3}{#4} + 0.5 - 2400000 #1}}%

8582 \count@\@ne

8583 \bbl@foreach\bbl@cs@umalqura@data{%

8584 \advance\count@\@ne

8585 \ifnum##1>\bbl@tempd\else

8586 \edef\bbl@tempe{\the\count@}%

8587 \edef\bbl@tempb{##1}%

8588 \fi}%

8589 \edef\bbl@templ{\fpeval{ \bbl@tempe + 16260 + 949 }}% month~lunar

8590 \edef\bbl@tempa{\fpeval{ floor((\bbl@templ - 1) / 12) }}% annus

8591 \edef#5{\fpeval{ \bbl@tempa + 1 }}%

8592 \edef#6{\fpeval{ \bbl@templ - (12 * \bbl@tempa) }}%

8593 \edef#7{\fpeval{ \bbl@tempd - \bbl@tempb + 1 }}}

8594 \bbl@add\bbl@precalendar{%

8595 \bbl@replace\bbl@ld@calendar{-civil}{}%

8596 \bbl@replace\bbl@ld@calendar{-umalqura}{}%

8597 \bbl@replace\bbl@ld@calendar{+}{}%

8598 \bbl@replace\bbl@ld@calendar{-}{}}

8599 〈/ca-islamic〉

13.2. Hebrew

This is basically the set of macros written by Michail Rozman in 1991, with corrections and adaptions

by Rama Porrat, Misha, Dan Haran and Boris Lavva. This must be eventually replaced by

computations with l3fp. An explanation of what’s going on can be found in hebcal.sty

8600 〈∗ca-hebrew〉
8601 \newcount\bbl@cntcommon

8602 \def\bbl@remainder#1#2#3{%

8603 #3=#1\relax

8604 \divide #3 by #2\relax

8605 \multiply #3 by -#2\relax

8606 \advance #3 by #1\relax}%

8607 \newif\ifbbl@divisible

8608 \def\bbl@checkifdivisible#1#2{%

8609 {\countdef\tmp=0

8610 \bbl@remainder{#1}{#2}{\tmp}%

8611 \ifnum \tmp=0

8612 \global\bbl@divisibletrue

8613 \else

8614 \global\bbl@divisiblefalse

8615 \fi}}

8616 \newif\ifbbl@gregleap

171

8617 \def\bbl@ifgregleap#1{%

8618 \bbl@checkifdivisible{#1}{4}%

8619 \ifbbl@divisible

8620 \bbl@checkifdivisible{#1}{100}%

8621 \ifbbl@divisible

8622 \bbl@checkifdivisible{#1}{400}%

8623 \ifbbl@divisible

8624 \bbl@gregleaptrue

8625 \else

8626 \bbl@gregleapfalse

8627 \fi

8628 \else

8629 \bbl@gregleaptrue

8630 \fi

8631 \else

8632 \bbl@gregleapfalse

8633 \fi

8634 \ifbbl@gregleap}

8635 \def\bbl@gregdayspriormonths#1#2#3{%

8636 {#3=\ifcase #1 0 \or 0 \or 31 \or 59 \or 90 \or 120 \or 151 \or

8637 181 \or 212 \or 243 \or 273 \or 304 \or 334 \fi

8638 \bbl@ifgregleap{#2}%

8639 \ifnum #1 > 2

8640 \advance #3 by 1

8641 \fi

8642 \fi

8643 \global\bbl@cntcommon=#3}%

8644 #3=\bbl@cntcommon}

8645 \def\bbl@gregdaysprioryears#1#2{%

8646 {\countdef\tmpc=4

8647 \countdef\tmpb=2

8648 \tmpb=#1\relax

8649 \advance \tmpb by -1

8650 \tmpc=\tmpb

8651 \multiply \tmpc by 365

8652 #2=\tmpc

8653 \tmpc=\tmpb

8654 \divide \tmpc by 4

8655 \advance #2 by \tmpc

8656 \tmpc=\tmpb

8657 \divide \tmpc by 100

8658 \advance #2 by -\tmpc

8659 \tmpc=\tmpb

8660 \divide \tmpc by 400

8661 \advance #2 by \tmpc

8662 \global\bbl@cntcommon=#2\relax}%

8663 #2=\bbl@cntcommon}

8664 \def\bbl@absfromgreg#1#2#3#4{%

8665 {\countdef\tmpd=0

8666 #4=#1\relax

8667 \bbl@gregdayspriormonths{#2}{#3}{\tmpd}%

8668 \advance #4 by \tmpd

8669 \bbl@gregdaysprioryears{#3}{\tmpd}%

8670 \advance #4 by \tmpd

8671 \global\bbl@cntcommon=#4\relax}%

8672 #4=\bbl@cntcommon}

8673 \newif\ifbbl@hebrleap

8674 \def\bbl@checkleaphebryear#1{%

8675 {\countdef\tmpa=0

8676 \countdef\tmpb=1

8677 \tmpa=#1\relax

8678 \multiply \tmpa by 7

8679 \advance \tmpa by 1

172

8680 \bbl@remainder{\tmpa}{19}{\tmpb}%

8681 \ifnum \tmpb < 7

8682 \global\bbl@hebrleaptrue

8683 \else

8684 \global\bbl@hebrleapfalse

8685 \fi}}

8686 \def\bbl@hebrelapsedmonths#1#2{%

8687 {\countdef\tmpa=0

8688 \countdef\tmpb=1

8689 \countdef\tmpc=2

8690 \tmpa=#1\relax

8691 \advance \tmpa by -1

8692 #2=\tmpa

8693 \divide #2 by 19

8694 \multiply #2 by 235

8695 \bbl@remainder{\tmpa}{19}{\tmpb}% \tmpa=years%19-years this cycle

8696 \tmpc=\tmpb

8697 \multiply \tmpb by 12

8698 \advance #2 by \tmpb

8699 \multiply \tmpc by 7

8700 \advance \tmpc by 1

8701 \divide \tmpc by 19

8702 \advance #2 by \tmpc

8703 \global\bbl@cntcommon=#2}%

8704 #2=\bbl@cntcommon}

8705 \def\bbl@hebrelapseddays#1#2{%

8706 {\countdef\tmpa=0

8707 \countdef\tmpb=1

8708 \countdef\tmpc=2

8709 \bbl@hebrelapsedmonths{#1}{#2}%

8710 \tmpa=#2\relax

8711 \multiply \tmpa by 13753

8712 \advance \tmpa by 5604

8713 \bbl@remainder{\tmpa}{25920}{\tmpc}% \tmpc == ConjunctionParts

8714 \divide \tmpa by 25920

8715 \multiply #2 by 29

8716 \advance #2 by 1

8717 \advance #2 by \tmpa

8718 \bbl@remainder{#2}{7}{\tmpa}%

8719 \ifnum \tmpc < 19440

8720 \ifnum \tmpc < 9924

8721 \else

8722 \ifnum \tmpa=2

8723 \bbl@checkleaphebryear{#1}% of a common year

8724 \ifbbl@hebrleap

8725 \else

8726 \advance #2 by 1

8727 \fi

8728 \fi

8729 \fi

8730 \ifnum \tmpc < 16789

8731 \else

8732 \ifnum \tmpa=1

8733 \advance #1 by -1

8734 \bbl@checkleaphebryear{#1}% at the end of leap year

8735 \ifbbl@hebrleap

8736 \advance #2 by 1

8737 \fi

8738 \fi

8739 \fi

8740 \else

8741 \advance #2 by 1

8742 \fi

173

8743 \bbl@remainder{#2}{7}{\tmpa}%

8744 \ifnum \tmpa=0

8745 \advance #2 by 1

8746 \else

8747 \ifnum \tmpa=3

8748 \advance #2 by 1

8749 \else

8750 \ifnum \tmpa=5

8751 \advance #2 by 1

8752 \fi

8753 \fi

8754 \fi

8755 \global\bbl@cntcommon=#2\relax}%

8756 #2=\bbl@cntcommon}

8757 \def\bbl@daysinhebryear#1#2{%

8758 {\countdef\tmpe=12

8759 \bbl@hebrelapseddays{#1}{\tmpe}%

8760 \advance #1 by 1

8761 \bbl@hebrelapseddays{#1}{#2}%

8762 \advance #2 by -\tmpe

8763 \global\bbl@cntcommon=#2}%

8764 #2=\bbl@cntcommon}

8765 \def\bbl@hebrdayspriormonths#1#2#3{%

8766 {\countdef\tmpf= 14

8767 #3=\ifcase #1

8768 0 \or

8769 0 \or

8770 30 \or

8771 59 \or

8772 89 \or

8773 118 \or

8774 148 \or

8775 148 \or

8776 177 \or

8777 207 \or

8778 236 \or

8779 266 \or

8780 295 \or

8781 325 \or

8782 400

8783 \fi

8784 \bbl@checkleaphebryear{#2}%

8785 \ifbbl@hebrleap

8786 \ifnum #1 > 6

8787 \advance #3 by 30

8788 \fi

8789 \fi

8790 \bbl@daysinhebryear{#2}{\tmpf}%

8791 \ifnum #1 > 3

8792 \ifnum \tmpf=353

8793 \advance #3 by -1

8794 \fi

8795 \ifnum \tmpf=383

8796 \advance #3 by -1

8797 \fi

8798 \fi

8799 \ifnum #1 > 2

8800 \ifnum \tmpf=355

8801 \advance #3 by 1

8802 \fi

8803 \ifnum \tmpf=385

8804 \advance #3 by 1

8805 \fi

174

8806 \fi

8807 \global\bbl@cntcommon=#3\relax}%

8808 #3=\bbl@cntcommon}

8809 \def\bbl@absfromhebr#1#2#3#4{%

8810 {#4=#1\relax

8811 \bbl@hebrdayspriormonths{#2}{#3}{#1}%

8812 \advance #4 by #1\relax

8813 \bbl@hebrelapseddays{#3}{#1}%

8814 \advance #4 by #1\relax

8815 \advance #4 by -1373429

8816 \global\bbl@cntcommon=#4\relax}%

8817 #4=\bbl@cntcommon}

8818 \def\bbl@hebrfromgreg#1#2#3#4#5#6{%

8819 {\countdef\tmpx= 17

8820 \countdef\tmpy= 18

8821 \countdef\tmpz= 19

8822 #6=#3\relax

8823 \global\advance #6 by 3761

8824 \bbl@absfromgreg{#1}{#2}{#3}{#4}%

8825 \tmpz=1 \tmpy=1

8826 \bbl@absfromhebr{\tmpz}{\tmpy}{#6}{\tmpx}%

8827 \ifnum \tmpx > #4\relax

8828 \global\advance #6 by -1

8829 \bbl@absfromhebr{\tmpz}{\tmpy}{#6}{\tmpx}%

8830 \fi

8831 \advance #4 by -\tmpx

8832 \advance #4 by 1

8833 #5=#4\relax

8834 \divide #5 by 30

8835 \loop

8836 \bbl@hebrdayspriormonths{#5}{#6}{\tmpx}%

8837 \ifnum \tmpx < #4\relax

8838 \advance #5 by 1

8839 \tmpy=\tmpx

8840 \repeat

8841 \global\advance #5 by -1

8842 \global\advance #4 by -\tmpy}}

8843 \newcount\bbl@hebrday \newcount\bbl@hebrmonth \newcount\bbl@hebryear

8844 \newcount\bbl@gregday \newcount\bbl@gregmonth \newcount\bbl@gregyear

8845 \def\bbl@ca@hebrew#1-#2-#3\@@#4#5#6{%

8846 \bbl@gregday=#3\relax \bbl@gregmonth=#2\relax \bbl@gregyear=#1\relax

8847 \bbl@hebrfromgreg

8848 {\bbl@gregday}{\bbl@gregmonth}{\bbl@gregyear}%

8849 {\bbl@hebrday}{\bbl@hebrmonth}{\bbl@hebryear}%

8850 \edef#4{\the\bbl@hebryear}%

8851 \edef#5{\the\bbl@hebrmonth}%

8852 \edef#6{\the\bbl@hebrday}}

8853 〈/ca-hebrew〉

13.3. Persian

There is an algorithm written in TeX by Jabri, Abolhassani, Pournader and Esfahbod, created for the

first versions of the FarsiTeX system (no longer available), but the original license is GPL, so its use

with LPPL is problematic. The code here follows loosely that by John Walker, which is free and

accurate, but sadly very complex, so the relevant data for the years 2013-2050 have been

pre-calculated and stored. Actually, all we need is the first day (either March 20 or March 21).

8854 〈∗ca-persian〉
8855 <@Compute Julian day@>

8856 \def\bbl@cs@firstjal@xx{2012,2016,2020,2024,2028,2029,% March 20

8857 2032,2033,2036,2037,2040,2041,2044,2045,2048,2049}

8858 \def\bbl@ca@persian#1-#2-#3\@@#4#5#6{%

8859 \edef\bbl@tempa{#1}% 20XX-03-\bbl@tempe = 1 farvardin:

8860 \ifnum\bbl@tempa>2012 \ifnum\bbl@tempa<2051

175

8861 \bbl@afterfi\expandafter\@gobble

8862 \fi\fi

8863 {\bbl@error{year-out-range}{2013-2050}{}{}}%

8864 \bbl@xin@{\bbl@tempa}{\bbl@cs@firstjal@xx}%

8865 \ifin@\def\bbl@tempe{20}\else\def\bbl@tempe{21}\fi

8866 \edef\bbl@tempc{\fpeval{\bbl@cs@jd{\bbl@tempa}{#2}{#3}+.5}}% current

8867 \edef\bbl@tempb{\fpeval{\bbl@cs@jd{\bbl@tempa}{03}{\bbl@tempe}+.5}}% begin

8868 \ifnum\bbl@tempc<\bbl@tempb

8869 \edef\bbl@tempa{\fpeval{\bbl@tempa-1}}% go back 1 year and redo

8870 \bbl@xin@{\bbl@tempa}{\bbl@cs@firstjal@xx}%

8871 \ifin@\def\bbl@tempe{20}\else\def\bbl@tempe{21}\fi

8872 \edef\bbl@tempb{\fpeval{\bbl@cs@jd{\bbl@tempa}{03}{\bbl@tempe}+.5}}%

8873 \fi

8874 \edef#4{\fpeval{\bbl@tempa-621}}% set Jalali year

8875 \edef#6{\fpeval{\bbl@tempc-\bbl@tempb+1}}% days from 1 farvardin

8876 \edef#5{\fpeval{% set Jalali month

8877 (#6 <= 186) ? ceil(#6 / 31) : ceil((#6 - 6) / 30)}}

8878 \edef#6{\fpeval{% set Jalali day

8879 (#6 - ((#5 <= 7) ? ((#5 - 1) * 31) : (((#5 - 1) * 30) + 6)))}}}

8880 〈/ca-persian〉

13.4. Coptic and Ethiopic

Adapted from jquery.calendars.package-1.1.4, written by Keith Wood, 2010. Dual license: GPL

and MIT. The only difference is the epoch.

8881 〈∗ca-coptic〉
8882 <@Compute Julian day@>

8883 \def\bbl@ca@coptic#1-#2-#3\@@#4#5#6{%

8884 \edef\bbl@tempd{\fpeval{floor(\bbl@cs@jd{#1}{#2}{#3}) + 0.5}}%

8885 \edef\bbl@tempc{\fpeval{\bbl@tempd - 1825029.5}}%

8886 \edef#4{\fpeval{%

8887 floor((\bbl@tempc - floor((\bbl@tempc+366) / 1461)) / 365) + 1}}%

8888 \edef\bbl@tempc{\fpeval{%

8889 \bbl@tempd - (#4-1) * 365 - floor(#4/4) - 1825029.5}}%

8890 \edef#5{\fpeval{floor(\bbl@tempc / 30) + 1}}%

8891 \edef#6{\fpeval{\bbl@tempc - (#5 - 1) * 30 + 1}}}

8892 〈/ca-coptic〉
8893 〈∗ca-ethiopic〉
8894 <@Compute Julian day@>

8895 \def\bbl@ca@ethiopic#1-#2-#3\@@#4#5#6{%

8896 \edef\bbl@tempd{\fpeval{floor(\bbl@cs@jd{#1}{#2}{#3}) + 0.5}}%

8897 \edef\bbl@tempc{\fpeval{\bbl@tempd - 1724220.5}}%

8898 \edef#4{\fpeval{%

8899 floor((\bbl@tempc - floor((\bbl@tempc+366) / 1461)) / 365) + 1}}%

8900 \edef\bbl@tempc{\fpeval{%

8901 \bbl@tempd - (#4-1) * 365 - floor(#4/4) - 1724220.5}}%

8902 \edef#5{\fpeval{floor(\bbl@tempc / 30) + 1}}%

8903 \edef#6{\fpeval{\bbl@tempc - (#5 - 1) * 30 + 1}}}

8904 〈/ca-ethiopic〉

13.5. Julian

Based on [ReinDersh].

8905 〈∗ca-julian〉
8906 <@Compute Julian day@>

8907 \def\bbl@ca@julian#1-#2-#3\@@#4#5#6{%

8908 \edef\bbl@tempj{\fpeval{floor(\bbl@cs@jd{#1}{#2}{#3}) + .5}}%

8909 \edef\bbl@tempa{\fpeval{\bbl@tempj + 32082.5}}%

8910 \edef\bbl@tempb{\fpeval{floor((4 * \bbl@tempa + 3) / 1461)}}%

8911 \edef\bbl@tempc{\fpeval{\bbl@tempa - floor(1461*\bbl@tempb/4)}}%

8912 \edef\bbl@tempd{\fpeval{floor((5 * \bbl@tempc + 2) / 153)}}%

8913 \edef#6{\fpeval{\bbl@tempc - floor((153*\bbl@tempd+2) / 5) + 1}}%

176

8914 \edef#5{\fpeval{\bbl@tempd + 3 - 12 * floor(\bbl@tempd / 10)}}%

8915 \edef#4{\fpeval{\bbl@tempb - 4800 + floor(\bbl@tempd / 10)}}}

8916 〈/ca-julian〉

13.6. Buddhist

That’s very simple.

8917 〈∗ca-buddhist〉
8918 \def\bbl@ca@buddhist#1-#2-#3\@@#4#5#6{%

8919 \edef#4{\number\numexpr#1+543\relax}%

8920 \edef#5{#2}%

8921 \edef#6{#3}}

8922 〈/ca-buddhist〉
8923 %

8924 % \subsection{Chinese}

8925 %

8926 % Brute force, with the Julian day of first day of each month. The

8927 % table has been computed with the help of \textsf{python-lunardate} by

8928 % Ricky Yeung, GPLv2 (but the code itself has not been used). The range

8929 % is 2015-2044.

8930 %

8931 % \begin{macrocode}

8932 〈∗ca-chinese〉
8933 \ExplSyntaxOn

8934 <@Compute Julian day@>

8935 \def\bbl@ca@chinese#1-#2-#3\@@#4#5#6{%

8936 \edef\bbl@tempd{\fpeval{%

8937 \bbl@cs@jd{#1}{#2}{#3} - 2457072.5 }}%

8938 \count@\z@

8939 \@tempcnta=2015

8940 \bbl@foreach\bbl@cs@chinese@data{%

8941 \ifnum##1>\bbl@tempd\else

8942 \advance\count@\@ne

8943 \ifnum\count@>12

8944 \count@\@ne

8945 \advance\@tempcnta\@ne\fi

8946 \bbl@xin@{,##1,}{,\bbl@cs@chinese@leap,}%

8947 \ifin@

8948 \advance\count@\m@ne

8949 \edef\bbl@tempe{\the\numexpr\count@+12\relax}%

8950 \else

8951 \edef\bbl@tempe{\the\count@}%

8952 \fi

8953 \edef\bbl@tempb{##1}%

8954 \fi}%

8955 \edef#4{\the\@tempcnta}%

8956 \edef#5{\bbl@tempe}%

8957 \edef#6{\the\numexpr\bbl@tempd-\bbl@tempb+1\relax}}

8958 \def\bbl@cs@chinese@leap{%

8959 885,1920,2953,3809,4873,5906,6881,7825,8889,9893,10778}

8960 \def\bbl@cs@chinese@data{0,29,59,88,117,147,176,206,236,266,295,325,

8961 354,384,413,443,472,501,531,560,590,620,649,679,709,738,%

8962 768,797,827,856,885,915,944,974,1003,1033,1063,1093,1122,%

8963 1152,1181,1211,1240,1269,1299,1328,1358,1387,1417,1447,1477,%

8964 1506,1536,1565,1595,1624,1653,1683,1712,1741,1771,1801,1830,%

8965 1860,1890,1920,1949,1979,2008,2037,2067,2096,2126,2155,2185,%

8966 2214,2244,2274,2303,2333,2362,2392,2421,2451,2480,2510,2539,%

8967 2569,2598,2628,2657,2687,2717,2746,2776,2805,2835,2864,2894,%

8968 2923,2953,2982,3011,3041,3071,3100,3130,3160,3189,3219,3248,%

8969 3278,3307,3337,3366,3395,3425,3454,3484,3514,3543,3573,3603,%

8970 3632,3662,3691,3721,3750,3779,3809,3838,3868,3897,3927,3957,%

8971 3987,4016,4046,4075,4105,4134,4163,4193,4222,4251,4281,4311,%

8972 4341,4370,4400,4430,4459,4489,4518,4547,4577,4606,4635,4665,%

177

8973 4695,4724,4754,4784,4814,4843,4873,4902,4931,4961,4990,5019,%

8974 5049,5079,5108,5138,5168,5197,5227,5256,5286,5315,5345,5374,%

8975 5403,5433,5463,5492,5522,5551,5581,5611,5640,5670,5699,5729,%

8976 5758,5788,5817,5846,5876,5906,5935,5965,5994,6024,6054,6083,%

8977 6113,6142,6172,6201,6231,6260,6289,6319,6348,6378,6408,6437,%

8978 6467,6497,6526,6556,6585,6615,6644,6673,6703,6732,6762,6791,%

8979 6821,6851,6881,6910,6940,6969,6999,7028,7057,7087,7116,7146,%

8980 7175,7205,7235,7264,7294,7324,7353,7383,7412,7441,7471,7500,%

8981 7529,7559,7589,7618,7648,7678,7708,7737,7767,7796,7825,7855,%

8982 7884,7913,7943,7972,8002,8032,8062,8092,8121,8151,8180,8209,%

8983 8239,8268,8297,8327,8356,8386,8416,8446,8475,8505,8534,8564,%

8984 8593,8623,8652,8681,8711,8740,8770,8800,8829,8859,8889,8918,%

8985 8948,8977,9007,9036,9066,9095,9124,9154,9183,9213,9243,9272,%

8986 9302,9331,9361,9391,9420,9450,9479,9508,9538,9567,9597,9626,%

8987 9656,9686,9715,9745,9775,9804,9834,9863,9893,9922,9951,9981,%

8988 10010,10040,10069,10099,10129,10158,10188,10218,10247,10277,%

8989 10306,10335,10365,10394,10423,10453,10483,10512,10542,10572,%

8990 10602,10631,10661,10690,10719,10749,10778,10807,10837,10866,%

8991 10896,10926,10956,10986,11015,11045,11074,11103}

8992 \ExplSyntaxOff

8993 〈/ca-chinese〉

14. Support for Plain TEX (plain.def)

14.1. Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.texmay only be used to designate his version of

the american English hyphenation patterns, a new solution has to be found in order to be able to load

hyphenation patterns for other languages in a plain-based TEX-format. When asked he responded:

That file name is “sacred”, and if anybody changes it they will cause severe

upward/downward compatibility headaches.

People can have a file localhyphen.tex or whatever they like, but they mustn’t diddle with

hyphen.tex (or plain.tex except to preload additional fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers around plain.tex

and lplain.tex to achieve the desired effect, based on the babel package. If you load each of them

with iniTEX, you will get a file called either bplain.fmt or blplain.fmt, which you can use as

replacements for plain.fmt and lplain.fmt.

As these files are going to be read as the first thing iniTEX sees, we need to set some category codes

just to be able to change the definition of \input.

8994 〈∗bplain | blplain〉
8995 \catcode`\{=1 % left brace is begin-group character

8996 \catcode`\}=2 % right brace is end-group character

8997 \catcode`\#=6 % hash mark is macro parameter character

If a file called hyphen.cfg can be found, we make sure that it will be read instead of the file

hyphen.tex. We do this by first saving the original meaning of \input (and I use a one letter control

sequence for that so as not to waste multi-letter control sequence on this in the format).

8998 \openin 0 hyphen.cfg

8999 \ifeof0

9000 \else

9001 \let\a\input

Then \input is defined to forget about its argument and load hyphen.cfg instead. Once that’s done

the original meaning of \input can be restored and the definition of \a can be forgotten.

9002 \def\input #1 {%

9003 \let\input\a

9004 \a hyphen.cfg

9005 \let\a\undefined

9006 }

9007 \fi

9008 〈/bplain | blplain〉

178

Now that we have made sure that hyphen.cfg will be loaded at the right moment it is time to load

plain.tex.

9009 〈bplain〉\a plain.tex

9010 〈blplain〉\a lplain.tex

Finally we change the contents of \fmtname to indicate that this is not the plain format, but a

format based on plain with the babel package preloaded.

9011 〈bplain〉\def\fmtname{babel-plain}
9012 〈blplain〉\def\fmtname{babel-lplain}

When you are using a different format, based on plain.tex you can make a copy of blplain.tex,

rename it and replace plain.tex with the name of your format file.

14.2. Emulating some LATEX features

The file babel.def expects some definitions made in the LATEX2ε style file. So, in Plain we must

provide at least some predefined values as well some tools to set them (even if not all options are

available). There are no package options, and therefore and alternative mechanism is provided. For

the moment, only \babeloptionstrings and \babeloptionmath are provided, which can be defined

before loading babel. \BabelModifiers can be set too (but not sure it works).

9013 〈〈∗Emulate LaTeX〉〉 ≡
9014 \def\@empty{}

9015 \def\loadlocalcfg#1{%

9016 \openin0#1.cfg

9017 \ifeof0

9018 \closein0

9019 \else

9020 \closein0

9021 {\immediate\write16{*************************************}%

9022 \immediate\write16{* Local config file #1.cfg used}%

9023 \immediate\write16{*}%

9024 }

9025 \input #1.cfg\relax

9026 \fi

9027 \@endofldf}

14.3. General tools

A number of LATEX macro’s that are needed later on.

9028 \long\def\@firstofone#1{#1}

9029 \long\def\@firstoftwo#1#2{#1}

9030 \long\def\@secondoftwo#1#2{#2}

9031 \def\@nnil{\@nil}

9032 \def\@gobbletwo#1#2{}

9033 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}

9034 \def\@star@or@long#1{%

9035 \@ifstar

9036 {\let\l@ngrel@x\relax#1}%

9037 {\let\l@ngrel@x\long#1}}

9038 \let\l@ngrel@x\relax

9039 \def\@car#1#2\@nil{#1}

9040 \def\@cdr#1#2\@nil{#2}

9041 \let\@typeset@protect\relax

9042 \let\protected@edef\edef

9043 \long\def\@gobble#1{}

9044 \edef\@backslashchar{\expandafter\@gobble\string\\}

9045 \def\strip@prefix#1>{}

9046 \def\g@addto@macro#1#2{{%

9047 \toks@\expandafter{#1#2}%

9048 \xdef#1{\the\toks@}}}

9049 \def\@namedef#1{\expandafter\def\csname #1\endcsname}

9050 \def\@nameuse#1{\csname #1\endcsname}

179

9051 \def\@ifundefined#1{%

9052 \expandafter\ifx\csname#1\endcsname\relax

9053 \expandafter\@firstoftwo

9054 \else

9055 \expandafter\@secondoftwo

9056 \fi}

9057 \def\@expandtwoargs#1#2#3{%

9058 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}

9059 \def\zap@space#1 #2{%

9060 #1%

9061 \ifx#2\@empty\else\expandafter\zap@space\fi

9062 #2}

9063 \let\bbl@trace\@gobble

9064 \def\bbl@error#1{% Implicit #2#3#4

9065 \begingroup

9066 \catcode`\\=0 \catcode`\==12 \catcode`\`=12

9067 \catcode`\^^M=5 \catcode`\%=14

9068 \input errbabel.def

9069 \endgroup

9070 \bbl@error{#1}}

9071 \def\bbl@warning#1{%

9072 \begingroup

9073 \newlinechar=`\^^J

9074 \def\\{^^J(babel) }%

9075 \message{\\#1}%

9076 \endgroup}

9077 \let\bbl@infowarn\bbl@warning

9078 \def\bbl@info#1{%

9079 \begingroup

9080 \newlinechar=`\^^J

9081 \def\\{^^J}%

9082 \wlog{#1}%

9083 \endgroup}

LATEX2ε has the command \@onlypreamble which adds commands to a list of commands that are

no longer needed after \begin{document}.

9084 \ifx\@preamblecmds\@undefined

9085 \def\@preamblecmds{}

9086 \fi

9087 \def\@onlypreamble#1{%

9088 \expandafter\gdef\expandafter\@preamblecmds\expandafter{%

9089 \@preamblecmds\do#1}}

9090 \@onlypreamble\@onlypreamble

Mimic LATEX’s \AtBeginDocument; for this to work the user needs to add \begindocument to his file.

9091 \def\begindocument{%

9092 \@begindocumenthook

9093 \global\let\@begindocumenthook\@undefined

9094 \def\do##1{\global\let##1\@undefined}%

9095 \@preamblecmds

9096 \global\let\do\noexpand}

9097 \ifx\@begindocumenthook\@undefined

9098 \def\@begindocumenthook{}

9099 \fi

9100 \@onlypreamble\@begindocumenthook

9101 \def\AtBeginDocument{\g@addto@macro\@begindocumenthook}

We also have to mimic LATEX’s \AtEndOfPackage. Our replacement macro is much simpler; it stores

its argument in \@endofldf.

9102 \def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}

9103 \@onlypreamble\AtEndOfPackage

9104 \def\@endofldf{}

9105 \@onlypreamble\@endofldf

180

9106 \let\bbl@afterlang\@empty

9107 \chardef\bbl@opt@hyphenmap\z@

LATEX needs to be able to switch off writing to its auxiliary files; plain doesn’t have them by default.

There is a trick to hide some conditional commands from the outer \ifx. The same trick is applied

below.

9108 \catcode`\&=\z@

9109 \ifx&if@filesw\@undefined

9110 \expandafter\let\csname if@filesw\expandafter\endcsname

9111 \csname iffalse\endcsname

9112 \fi

9113 \catcode`\&=4

Mimic LATEX’s commands to define control sequences.

9114 \def\newcommand{\@star@or@long\new@command}

9115 \def\new@command#1{%

9116 \@testopt{\@newcommand#1}0}

9117 \def\@newcommand#1[#2]{%

9118 \@ifnextchar [{\@xargdef#1[#2]}%

9119 {\@argdef#1[#2]}}

9120 \long\def\@argdef#1[#2]#3{%

9121 \@yargdef#1\@ne{#2}{#3}}

9122 \long\def\@xargdef#1[#2][#3]#4{%

9123 \expandafter\def\expandafter#1\expandafter{%

9124 \expandafter\@protected@testopt\expandafter #1%

9125 \csname\string#1\expandafter\endcsname{#3}}%

9126 \expandafter\@yargdef \csname\string#1\endcsname

9127 \tw@{#2}{#4}}

9128 \long\def\@yargdef#1#2#3{%

9129 \@tempcnta#3\relax

9130 \advance \@tempcnta \@ne

9131 \let\@hash@\relax

9132 \edef\reserved@a{\ifx#2\tw@ [\@hash@1]\fi}%

9133 \@tempcntb #2%

9134 \@whilenum\@tempcntb <\@tempcnta

9135 \do{%

9136 \edef\reserved@a{\reserved@a\@hash@\the\@tempcntb}%

9137 \advance\@tempcntb \@ne}%

9138 \let\@hash@##%

9139 \l@ngrel@x\expandafter\def\expandafter#1\reserved@a}

9140 \def\providecommand{\@star@or@long\provide@command}

9141 \def\provide@command#1{%

9142 \begingroup

9143 \escapechar\m@ne\xdef\@gtempa{{\string#1}}%

9144 \endgroup

9145 \expandafter\@ifundefined\@gtempa

9146 {\def\reserved@a{\new@command#1}}%

9147 {\let\reserved@a\relax

9148 \def\reserved@a{\new@command\reserved@a}}%

9149 \reserved@a}%

9150 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}

9151 \def\declare@robustcommand#1{%

9152 \edef\reserved@a{\string#1}%

9153 \def\reserved@b{#1}%

9154 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}%

9155 \edef#1{%

9156 \ifx\reserved@a\reserved@b

9157 \noexpand\x@protect

9158 \noexpand#1%

9159 \fi

9160 \noexpand\protect

9161 \expandafter\noexpand\csname

9162 \expandafter\@gobble\string#1 \endcsname

181

9163 }%

9164 \expandafter\new@command\csname

9165 \expandafter\@gobble\string#1 \endcsname

9166 }

9167 \def\x@protect#1{%

9168 \ifx\protect\@typeset@protect\else

9169 \@x@protect#1%

9170 \fi

9171 }

9172 \catcode`\&=\z@ % Trick to hide conditionals

9173 \def\@x@protect#1&fi#2#3{&fi\protect#1}

The following little macro \in@ is taken from latex.ltx; it checks whether its first argument is

part of its second argument. It uses the boolean \in@; allocating a new boolean inside conditionally

executed code is not possible, hence the construct with the temporary definition of \bbl@tempa.

9174 \def\bbl@tempa{\csname newif\endcsname&ifin@}

9175 \catcode`\&=4

9176 \ifx\in@\@undefined

9177 \def\in@#1#2{%

9178 \def\in@@##1#1##2##3\in@@{%

9179 \ifx\in@##2\in@false\else\in@true\fi}%

9180 \in@@#2#1\in@\in@@}

9181 \else

9182 \let\bbl@tempa\@empty

9183 \fi

9184 \bbl@tempa

LATEX has a macro to check whether a certain package was loaded with specific options. The

command has two extra arguments which are code to be executed in either the true or false case.

This is used to detect whether the document needs one of the accents to be activated (activegrave and

activeacute). For plain TEX we assume that the user wants them to be active by default. Therefore the

only thing we do is execute the third argument (the code for the true case).

9185 \def\@ifpackagewith#1#2#3#4{#3}

The LATEX macro \@ifl@aded checks whether a file was loaded. This functionality is not needed for

plain TEX but we need the macro to be defined as a no-op.

9186 \def\@ifl@aded#1#2#3#4{}

For the following code we need to make sure that the commands \newcommand and

\providecommand exist with some sensible definition. They are not fully equivalent to their LATEX2ε
versions; just enough to make things work in plain TEXenvironments.

9187 \ifx\@tempcnta\@undefined

9188 \csname newcount\endcsname\@tempcnta\relax

9189 \fi

9190 \ifx\@tempcntb\@undefined

9191 \csname newcount\endcsname\@tempcntb\relax

9192 \fi

To prevent wasting two counters in LATEX (because counters with the same name are allocated later

by it) we reset the counter that holds the next free counter (\count10).

9193 \ifx\bye\@undefined

9194 \advance\count10 by -2\relax

9195 \fi

9196 \ifx\@ifnextchar\@undefined

9197 \def\@ifnextchar#1#2#3{%

9198 \let\reserved@d=#1%

9199 \def\reserved@a{#2}\def\reserved@b{#3}%

9200 \futurelet\@let@token\@ifnch}

9201 \def\@ifnch{%

9202 \ifx\@let@token\@sptoken

9203 \let\reserved@c\@xifnch

9204 \else

9205 \ifx\@let@token\reserved@d

9206 \let\reserved@c\reserved@a

182

9207 \else

9208 \let\reserved@c\reserved@b

9209 \fi

9210 \fi

9211 \reserved@c}

9212 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token

9213 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}

9214 \fi

9215 \def\@testopt#1#2{%

9216 \@ifnextchar[{#1}{#1[#2]}}

9217 \def\@protected@testopt#1{%

9218 \ifx\protect\@typeset@protect

9219 \expandafter\@testopt

9220 \else

9221 \@x@protect#1%

9222 \fi}

9223 \long\def\@whilenum#1\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax

9224 #2\relax}\fi}

9225 \long\def\@iwhilenum#1{\ifnum #1\expandafter\@iwhilenum

9226 \else\expandafter\@gobble\fi{#1}}

14.4. Encoding related macros

Code from ltoutenc.dtx, adapted for use in the plain TEX environment.

9227 \def\DeclareTextCommand{%

9228 \@dec@text@cmd\providecommand

9229 }

9230 \def\ProvideTextCommand{%

9231 \@dec@text@cmd\providecommand

9232 }

9233 \def\DeclareTextSymbol#1#2#3{%

9234 \@dec@text@cmd\chardef#1{#2}#3\relax

9235 }

9236 \def\@dec@text@cmd#1#2#3{%

9237 \expandafter\def\expandafter#2%

9238 \expandafter{%

9239 \csname#3-cmd\expandafter\endcsname

9240 \expandafter#2%

9241 \csname#3\string#2\endcsname

9242 }%

9243 % \let\@ifdefinable\@rc@ifdefinable

9244 \expandafter#1\csname#3\string#2\endcsname

9245 }

9246 \def\@current@cmd#1{%

9247 \ifx\protect\@typeset@protect\else

9248 \noexpand#1\expandafter\@gobble

9249 \fi

9250 }

9251 \def\@changed@cmd#1#2{%

9252 \ifx\protect\@typeset@protect

9253 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax

9254 \expandafter\ifx\csname ?\string#1\endcsname\relax

9255 \expandafter\def\csname ?\string#1\endcsname{%

9256 \@changed@x@err{#1}%

9257 }%

9258 \fi

9259 \global\expandafter\let

9260 \csname\cf@encoding \string#1\expandafter\endcsname

9261 \csname ?\string#1\endcsname

9262 \fi

9263 \csname\cf@encoding\string#1%

9264 \expandafter\endcsname

9265 \else

183

9266 \noexpand#1%

9267 \fi

9268 }

9269 \def\@changed@x@err#1{%

9270 \errhelp{Your command will be ignored, type <return> to proceed}%

9271 \errmessage{Command \protect#1 undefined in encoding \cf@encoding}}

9272 \def\DeclareTextCommandDefault#1{%

9273 \DeclareTextCommand#1?%

9274 }

9275 \def\ProvideTextCommandDefault#1{%

9276 \ProvideTextCommand#1?%

9277 }

9278 \expandafter\let\csname OT1-cmd\endcsname\@current@cmd

9279 \expandafter\let\csname?-cmd\endcsname\@changed@cmd

9280 \def\DeclareTextAccent#1#2#3{%

9281 \DeclareTextCommand#1{#2}[1]{\accent#3 ##1}

9282 }

9283 \def\DeclareTextCompositeCommand#1#2#3#4{%

9284 \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname

9285 \edef\reserved@b{\string##1}%

9286 \edef\reserved@c{%

9287 \expandafter\@strip@args\meaning\reserved@a:-\@strip@args}%

9288 \ifx\reserved@b\reserved@c

9289 \expandafter\expandafter\expandafter\ifx

9290 \expandafter\@car\reserved@a\relax\relax\@nil

9291 \@text@composite

9292 \else

9293 \edef\reserved@b##1{%

9294 \def\expandafter\noexpand

9295 \csname#2\string#1\endcsname####1{%

9296 \noexpand\@text@composite

9297 \expandafter\noexpand\csname#2\string#1\endcsname

9298 ####1\noexpand\@empty\noexpand\@text@composite

9299 {##1}%

9300 }%

9301 }%

9302 \expandafter\reserved@b\expandafter{\reserved@a{##1}}%

9303 \fi

9304 \expandafter\def\csname\expandafter\string\csname

9305 #2\endcsname\string#1-\string#3\endcsname{#4}

9306 \else

9307 \errhelp{Your command will be ignored, type <return> to proceed}%

9308 \errmessage{\string\DeclareTextCompositeCommand\space used on

9309 inappropriate command \protect#1}

9310 \fi

9311 }

9312 \def\@text@composite#1#2#3\@text@composite{%

9313 \expandafter\@text@composite@x

9314 \csname\string#1-\string#2\endcsname

9315 }

9316 \def\@text@composite@x#1#2{%

9317 \ifx#1\relax

9318 #2%

9319 \else

9320 #1%

9321 \fi

9322 }

9323 %

9324 \def\@strip@args#1:#2-#3\@strip@args{#2}

9325 \def\DeclareTextComposite#1#2#3#4{%

9326 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}}%

9327 \bgroup

9328 \lccode`\@=#4%

184

9329 \lowercase{%

9330 \egroup

9331 \reserved@a @%

9332 }%

9333 }

9334 %

9335 \def\UseTextSymbol#1#2{#2}

9336 \def\UseTextAccent#1#2#3{}

9337 \def\@use@text@encoding#1{}

9338 \def\DeclareTextSymbolDefault#1#2{%

9339 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}%

9340 }

9341 \def\DeclareTextAccentDefault#1#2{%

9342 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}%

9343 }

9344 \def\cf@encoding{OT1}

Currently we only use the LATEX2ε method for accents for those that are known to be made active in

some language definition file.

9345 \DeclareTextAccent{\"}{OT1}{127}

9346 \DeclareTextAccent{\'}{OT1}{19}

9347 \DeclareTextAccent{\^}{OT1}{94}

9348 \DeclareTextAccent{\`}{OT1}{18}

9349 \DeclareTextAccent{\~}{OT1}{126}

The following control sequences are used in babel.def but are not defined for plain TEX.

9350 \DeclareTextSymbol{\textquotedblleft}{OT1}{92}

9351 \DeclareTextSymbol{\textquotedblright}{OT1}{`\"}

9352 \DeclareTextSymbol{\textquoteleft}{OT1}{`\`}

9353 \DeclareTextSymbol{\textquoteright}{OT1}{`\'}

9354 \DeclareTextSymbol{\i}{OT1}{16}

9355 \DeclareTextSymbol{\ss}{OT1}{25}

For a couple of languages we need the LATEX-control sequence \scriptsize to be available. Because

plain TEX doesn’t have such a sophisticated font mechanism as LATEX has, we just \let it to \sevenrm.

9356 \ifx\scriptsize\@undefined

9357 \let\scriptsize\sevenrm

9358 \fi

And a few more “dummy” definitions.

9359 \def\languagename{english}%

9360 \let\bbl@opt@shorthands\@nnil

9361 \def\bbl@ifshorthand#1#2#3{#2}%

9362 \let\bbl@language@opts\@empty

9363 \let\bbl@provide@locale\relax

9364 \ifx\babeloptionstrings\@undefined

9365 \let\bbl@opt@strings\@nnil

9366 \else

9367 \let\bbl@opt@strings\babeloptionstrings

9368 \fi

9369 \def\BabelStringsDefault{generic}

9370 \def\bbl@tempa{normal}

9371 \ifx\babeloptionmath\bbl@tempa

9372 \def\bbl@mathnormal{\noexpand\textormath}

9373 \fi

9374 \def\AfterBabelLanguage#1#2{}

9375 \ifx\BabelModifiers\@undefined\let\BabelModifiers\relax\fi

9376 \let\bbl@afterlang\relax

9377 \def\bbl@opt@safe{BR}

9378 \ifx\@uclclist\@undefined\let\@uclclist\@empty\fi

9379 \ifx\bbl@trace\@undefined\def\bbl@trace#1{}\fi

9380 \expandafter\newif\csname ifbbl@single\endcsname

9381 \chardef\bbl@bidimode\z@

9382 〈〈/Emulate LaTeX〉〉

185

A proxy file:

9383 〈∗plain〉
9384 \input babel.def

9385 〈/plain〉

15. Acknowledgements

In the initial stages of the development of babel, Bernd Raichle provided many helpful suggestions

and Michel Goossens supplied contributions for many languages. Ideas from Nico Poppelier, Piet van

Oostrum and many others have been used. Paul Wackers and Werenfried Spit helped find and repair

bugs.

More recently, there are significant contributions by Salim Bou, Ulrike Fischer, Loren Davis and Udi

Fogiel.

Barbara Beeton has helped in improving the manual.

There are also many contributors for specific languages, which are mentioned in the respective

files. Without them, babel just wouldn’t exist.

References

[1] Huda Smitshuijzen Abifares, Arabic Typography, Saqi, 2001.

[2] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of national LATEX styles,

TUGboat 10 (1989) #3, pp. 401–406.

[3] Yannis Haralambous, Fonts & Encodings, O’Reilly, 2007.

[4] Donald E. Knuth, The TEXbook, Addison-Wesley, 1986.

[5] Jukka K. Korpela, Unicode Explained, O’Reilly, 2006.

[6] Leslie Lamport, LATEX, A document preparation System, Addison-Wesley, 1986.

[7] Leslie Lamport, in: TEXhax Digest, Volume 89, #13, 17 February 1989.

[8] Ken Lunde, CJKV Information Processing, O’Reilly, 2nd ed., 2009.

[9] Edward M. Reingold and Nachum Dershowitz, Calendrical Calculations: The Ultimate Edition,

Cambridge University Press, 2018

[10] Hubert Partl, German TEX, TUGboat 9 (1988) #1, pp. 70–72.

[11] Joachim Schrod, International LATEX is ready to use, TUGboat 11 (1990) #1, pp. 87–90.

[12] Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniu, Digital typography using LATEX,

Springer, 2002, pp. 301–373.

[13] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst, SDU Uitgeverij

(’s-Gravenhage, 1988).

186

	Contents
	1 Identification and loading of required files
	2 locale directory
	3 Tools
	3.1 A few core definitions
	3.2 LaTeX: babel.sty (start)
	3.3 base
	3.4 key=value options and other general option
	3.5 Post-process some options
	3.6 Plain: babel.def (start)

	4 babel.sty and babel.def (common)
	4.1 Selecting the language
	4.2 Errors
	4.3 More on selection
	4.4 Short tags
	4.5 Compatibility with language.def
	4.6 Hooks
	4.7 Setting up language files
	4.8 Shorthands
	4.9 Language attributes
	4.10 Support for saving and redefining macros
	4.11 French spacing
	4.12 Hyphens
	4.13 Multiencoding strings
	4.14 Tailor captions
	4.15 Making glyphs available
	4.15.1 Quotation marks
	4.15.2 Letters
	4.15.3 Shorthands for quotation marks
	4.15.4 Umlauts and tremas

	4.16 Layout
	4.17 Load engine specific macros
	4.18 Creating and modifying languages
	4.19 Main loop in ‘provide’
	4.20 Processing keys in ini
	4.21 French spacing (again)
	4.22 Handle language system
	4.23 Numerals
	4.24 Casing
	4.25 Getting info
	4.26 BCP 47 related commands

	5 Adjusting the Babel behavior
	5.1 Cross referencing macros
	5.2 Layout
	5.3 Marks
	5.4 Other packages
	5.4.1 ifthen
	5.4.2 varioref
	5.4.3 hhline

	5.5 Encoding and fonts
	5.6 Basic bidi support
	5.7 Local Language Configuration
	5.8 Language options

	6 The kernel of Babel
	7 Error messages
	8 Loading hyphenation patterns
	9 luatex + xetex: common stuff
	10 Hooks for XeTeX and LuaTeX
	10.1 XeTeX
	10.2 Support for interchar
	10.3 Layout
	10.4 8-bit TeX
	10.5 LuaTeX
	10.6 Southeast Asian scripts
	10.7 CJK line breaking
	10.8 Arabic justification
	10.9 Common stuff
	10.10 Automatic fonts and ids switching
	10.11 Bidi
	10.12 Layout
	10.13 Lua: transforms
	10.14 Lua: Auto bidi with basic and basic-r

	11 Data for CJK
	12 The `nil' language
	13 Calendars
	13.1 Islamic
	13.2 Hebrew
	13.3 Persian
	13.4 Coptic and Ethiopic
	13.5 Julian
	13.6 Buddhist

	14 Support for Plain TeX (plain.def)
	14.1 Not renaming hyphen.tex
	14.2 Emulating some LaTeX features
	14.3 General tools
	14.4 Encoding related macros

	15 Acknowledgements
	References

