
The l3backend-testphase package
Additional backend PDF features
LATEX PDF management bundle

The LATEX Project∗

Version 0.96y, released 2026-01-23

1 l3backend-testphase Implementation
1 〈drivers〉\ProvidesExplFile
2 〈∗dvipdfmx〉
3 {l3backend-testphase-dvipdfmx.def}{2026-01-23}{0.96y}
4 {LaTeX~PDF~management~bundle~backend~support: dvipdfmx}
5 〈/dvipdfmx〉
6 〈∗dvips〉
7 {l3backend-testphase-dvips.def}{2026-01-23}{0.96y}
8 {LaTeX~PDF~management~bundle~backend~support: dvips}
9 〈/dvips〉

10 〈∗dvisvgm〉
11 {l3backend-testphase-dvisvgm.def}{2026-01-23}{0.96y}
12 {LaTeX~PDF~management~bundle~backend~support: dvisvgm}
13 〈/dvisvgm〉
14 〈∗luatex〉
15 {l3backend-testphase-luatex.def}{2026-01-23}{0.96y}
16 {LaTeX~PDF~management~bundle~backend~support: PDF output (LuaTeX)}
17 〈/luatex〉
18 〈∗pdftex〉
19 {l3backend-testphase-pdftex.def}{2026-01-23}{0.96y}
20 {LaTeX~PDF~management~bundle~backend~support: PDF output (pdfTeX)}
21 〈/pdftex〉
22 〈∗xdvipdfmx〉
23 {l3backend-testphase-xetex.def}{2026-01-23}{0.96y}
24 {LaTeX~PDF~management~bundle~backend~support: XeTeX}
25 〈/xdvipdfmx〉

1.1 Variants
We need to generate temporarily a few e-types variants of kernel backend commands.
These can be removed once the kernel provides them.

26 〈@@=pdf〉
27 〈∗luatex | pdftex〉
28 \cs_generate_variant:Nn __kernel_backend_literal_page:n { e }

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

29 〈/luatex | pdftex〉
30 〈∗dvipdfmx | xdvipdfmx〉
31 \cs_generate_variant:Nn __kernel_backend_literal:n { e }
32 \cs_generate_variant:Nn __pdf_backend:n { e }
33 〈/dvipdfmx | xdvipdfmx〉
34 〈∗dvips〉
35 \cs_generate_variant:Nn __kernel_backend_postscript:n { e }
36 \cs_generate_variant:Nn __pdf_backend_pdfmark:n { e }
37 〈/dvips〉

1.2 Support for delayed literal and special
Starting with TeXlive 2023 the engines support a shipout keyword for \pdfliteral and
\special. When used the argument is not expanded when the command is used but
only when the page is shipped out. This allows for example the tagging code to delay
the page-wise numbering of MC-chunks until the page is actually built. For now we test
the engine support. The boolean is setup in pdfmanagement-testphase.dtx.

38 〈∗drivers〉
The following commands provide the needed kernel backend support. This are basi-

cally copies of similar commands of l3backend-basics.

__kernel_backend_shipout_literal:e The one shared function for all backends is access to the basic \special primitive.
39 \cs_new_protected:Npn __kernel_backend_shipout_literal:e #1
40 { \tex_special:D~shipout { #1} }
41 〈/drivers〉

(End of definition for __kernel_backend_shipout_literal:e.)

42 〈∗luatex | pdftex〉

__kernel_backend_shipout_literal_pdf:e This is equivalent to \special{pdf:} but the engine can track it. Without the direct
keyword everything is kept in sync: the transformation matrix is set to the current point
automatically. Note that this is still inside the text (BT …ET block).

43 \cs_new_protected:Npn __kernel_backend_shipout_literal_pdf:e #1
44 {
45 〈∗luatex〉
46 \tex_pdfextension:D ~ literal ~ shipout ~
47 〈/luatex〉
48 〈∗pdftex〉
49 \tex_pdfliteral:D ~ shipout ~
50 〈/pdftex〉
51 { #1 }
52 }

(End of definition for __kernel_backend_shipout_literal_pdf:e.)

__kernel_backend_shipout_literal_page:e Page literals are pretty simple.
53 \cs_new_protected:Npn __kernel_backend_shipout_literal_page:e #1
54 {
55 〈∗luatex〉
56 \tex_pdfextension:D ~ literal ~ shipout ~
57 〈/luatex〉
58 〈∗pdftex〉
59 \tex_pdfliteral:D ~ shipout ~

2

60 〈/pdftex〉
61 page { #1 }
62 }
63 〈/luatex | pdftex〉

(End of definition for __kernel_backend_shipout_literal_page:e.)

1.3 Crossreferences
Commands to get a reference for the absolute page counter.

64 〈∗drivers〉

65 \cs_new_protected:Npn __pdf_backend_record_abspage:n #1
66 {
67 \@bsphack
68 \property_record:nn{#1}{abspage}
69 \@esphack
70 }
71 \cs_new:Npn __pdf_backend_ref_abspage:n #1
72 {
73 \property_ref:nn{#1}{abspage}
74 }
75

76 \cs_generate_variant:Nn __pdf_backend_record_abspage:n {e}
77 \cs_generate_variant:Nn __pdf_backend_ref_abspage:n {e}
78 〈/drivers〉

avoid that destinations names are optimized with xelatex/dvipdfmx see https://tug.org/piper-
mail/dvipdfmx/2019-May/000002.html

79 〈∗dvipdfmx | xdvipdfmx〉
80 __kernel_backend_literal:n { dvipdfmx:config~C~ 0x0010 }
81 〈/dvipdfmx | xdvipdfmx〉

\g__pdf_tmpa_prop
\l__pdf_tmpa_tl

\l__pdf_backend_tmpa_box

Some scratch variables
82 〈∗drivers〉
83 \prop_new:N \g__pdf_tmpa_prop
84 \tl_new:N \l__pdf_tmpa_tl
85 \box_new:N \l__pdf_backend_tmpa_box
86 \box_new:N \l__pdf_backend_tmpb_box
87 〈/drivers〉

(End of definition for \g__pdf_tmpa_prop , \l__pdf_tmpa_tl , and \l__pdf_backend_tmpa_box.)

\g__pdf_backend_resourceid_int
\g__pdf_backend_name_int
\g__pdf_backend_page_int

a counter to create labels for the resources, a counter to number properties in bdc marks,
a counter for the \pdfpageref implementation.

88 〈∗drivers〉
89 \int_new:N \g__pdf_backend_resourceid_int
90 \int_new:N \g__pdf_backend_name_int
91 \int_new:N \g__pdf_backend_page_int
92 〈/drivers〉

(End of definition for \g__pdf_backend_resourceid_int , \g__pdf_backend_name_int , and \g__pdf_-
backend_page_int.)

3

1.4 luacode
Load the lua code.

93 〈∗luatex〉
94 \directlua { require("l3backend-testphase.lua") }
95 〈/luatex〉

1.5 Converting unicode strings to a pdfname
dvips needs a special function here, so we add this as backend function.

96 〈∗pdftex | luatex | dvipdfmx | xdvipdfmx | dvisvgm〉
97 \cs_new:Npn __kernel_pdf_name_from_unicode_e:n #1
98 {
99 / \str_convert_pdfname:e { \text_expand:n { #1 } }

100 }
101 〈/pdftex | luatex | dvipdfmx | xdvipdfmx | dvisvgm〉
102 〈∗dvips〉
103 \cs_new:Npn __kernel_pdf_name_from_unicode_e:n #1
104 {
105 ~ (\text_expand:n { #1 }) ~ cvn
106 }
107 〈/dvips〉

1.6 Hooks
1.6.1 Add the “end run” hooks

Here we add the end run hook to suitable end hooks.
108 〈∗pdftex | luatex〉
109 % put in \@kernel@after@enddocument@afterlastpage
110 \tl_gput_right:Nn \@kernel@after@enddocument@afterlastpage
111 {
112 \g__kernel_pdfmanagement_end_run_code_tl
113 }
114 〈/pdftex | luatex〉
115 〈∗dvipdfmx | xdvipdfmx〉
116 % put in \@kernel@after@shipout@lastpage
117 \tl_gput_right:Nn \@kernel@after@shipout@lastpage
118 {
119 \g__kernel_pdfmanagement_end_run_code_tl
120 }
121 〈/dvipdfmx | xdvipdfmx〉
122 〈∗dvips〉
123 % put in \@kernel@after@shipout@lastpage
124 \tl_gput_right:Nn\@kernel@after@shipout@lastpage
125 {
126 \g__kernel_pdfmanagement_end_run_code_tl
127 }
128 〈/dvips〉

4

1.6.2 Add the “shipout” hooks

Now we add to the shipout hooks the relevant token lists. We also push the page resources
in shipout/firstpage (AtBeginDvi) as the backend code sets color stack there. The xetex
driver needs a rule here. If it clashes on the first page, we will need a test ...

129 〈∗drivers〉
130 \tl_if_exist:NTF \@kernel@after@shipout@background
131 {
132 \g@addto@macro \@kernel@before@shipout@background{\relax}
133 \g@addto@macro \@kernel@after@shipout@background
134 {
135 \g__kernel_pdfmanagement_thispage_shipout_code_tl
136 }
137 }
138 {
139 \hook_gput_code:nnn{shipout/background}{pdf}
140 {
141 \g__kernel_pdfmanagement_thispage_shipout_code_tl
142 }
143 }
144

145 〈/drivers〉

1.7 The /Pages dictionary (pdfpagesattr)
__pdf_backend_Pages_primitive:n This is the primitive command to add something to the /Pages dictionary. It works

differently for the backends: pdftex and luatex overwrite existing content, dvips and
dvipdfmx are additive. luatex sets it in lua. The higher level code has to take this into
account.

146 〈∗pdftex〉
147 \cs_new_protected:Npn __pdf_backend_Pages_primitive:n #1
148 {
149 \tex_global:D \tex_pdfpagesattr:D { #1 }
150 }
151 〈/pdftex〉
152 〈∗luatex〉
153 %luatex: does it in lua
154 \cs_new_protected:Npn __pdf_backend_Pages_primitive:n #1
155 {
156 \tex_directlua:D
157 {
158 pdf.setpagesattributes(__pdf_backend_luastring:n { #1 })
159 }
160 }
161 〈/luatex〉
162 〈∗dvips〉
163 \cs_new_protected:Npx __pdf_backend_Pages_primitive:n #1
164 {
165 \tex_special:D{ps:~[#1~/PAGES~pdfmark} %]
166 }
167 〈/dvips〉
168 〈∗dvipdfmx | xdvipdfmx〉
169 \cs_new_protected:Npn __pdf_backend_Pages_primitive:n #1

5

170 {
171 __pdf_backend:n{put~@pages~<<#1>>}
172 }
173 〈/dvipdfmx | xdvipdfmx〉
174 〈∗dvisvgm〉
175 \cs_new_protected:Npn __pdf_backend_Pages_primitive:n #1
176 {}
177 〈/dvisvgm〉

(End of definition for __pdf_backend_Pages_primitive:n.)

1.8 “Page” and “ThisPage” attributes (pdfpageattr)
__pdf_backend_Page_primitive:n

__pdf_backend_Page_gput:nn
__pdf_backend_Page_gremove:n

__pdf_backend_ThisPage_gput:nn
__pdf_backend_ThisPage_gpush:n

__pdf_backend_Page_primitive:n is the primitive command to add something to the
/Page dictionary. It works differently for the backends: pdftex and luatex overwrite
existing content, dvips and dvipdfmx are additive. luatex sets it in lua. The higher
level code has to take this into account. __pdf_backend_Page_gput:nn stores default
values. __pdf_backend_Page_gremove:n allows to remove a value. __pdf_backend_-
ThisPage_gput:nn adds a value to the current page. __pdf_backend_ThisPage_-
gpush:n merges the default and the current page values and add them to the dictionary
of the current page in \g__pdf_backend_thispage_shipout_tl.

178 % backend commands
179 〈∗pdftex〉
180 %the primitive
181 \cs_new_protected:Npn __pdf_backend_Page_primitive:n #1
182 {
183 \tex_global:D \tex_pdfpageattr:D { #1 }
184 }
185 % the command to store default values.
186 % Uses a prop with pdflatex + dvi,
187 % sets a lua table with lualatex
188 \cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2 %key,value
189 {
190 \pdfdict_gput:nnn {g__pdf_Core/Page}{ #1 }{ #2 }
191 }
192 % the command to remove a default value.
193 % Uses a prop with pdflatex + dvi,
194 % changes a lua table with lualatex
195 \cs_new_protected:Npn __pdf_backend_Page_gremove:n #1
196 {
197 \pdfdict_gremove:nn {g__pdf_Core/Page}{ #1 }
198 }
199 % the command used in the document.
200 % direct call of the primitive special with dvips/dvipdfmx
201 % \latelua: fill a page related table with lualatex, merge it with the page
202 % table and push it directly
203 % write to aux and store in prop with pdflatex
204 \cs_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2
205 {
206 %we need to know the page the resource should be added too.
207 \int_gincr:N\g__pdf_backend_resourceid_int
208 __pdf_backend_record_abspage:e { l3pdf\int_use:N\g__pdf_backend_resourceid_int }
209 \tl_set:Ne \l__pdf_tmpa_tl

6

210 {
211 __pdf_backend_ref_abspage:e {l3pdf\int_use:N\g__pdf_backend_resourceid_int}
212 }
213 \pdfdict_if_exist:nF { g__pdf_Core/backend_Page\l__pdf_tmpa_tl}
214 {
215 \pdfdict_new:n { g__pdf_Core/backend_Page\l__pdf_tmpa_tl}
216 }
217 %backend_Page has no handler.
218 \pdfdict_gput:nnn {g__pdf_Core/backend_Page\l__pdf_tmpa_tl}{ #1 }{ #2 }
219 }
220 %the code to push the values, used in shipout
221 %merges the two props and then fills the register in pdflatex
222 %merges the two tables and then fills (in lua) in luatex
223 %issues the values stored in the global prop with dvi
224 \cs_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1
225 {
226 \prop_gset_eq:Nc \g__pdf_tmpa_prop { __kernel_pdfdict_name:n { g__pdf_Core/Page } }
227 \prop_if_exist:cT { __kernel_pdfdict_name:n { g__pdf_Core/backend_Page#1 } }
228 {
229 \prop_map_inline:cn { __kernel_pdfdict_name:n { g__pdf_Core/backend_Page#1 } }
230 {
231 \prop_gput:Nnn \g__pdf_tmpa_prop { ##1 }{ ##2 }
232 }
233 }
234 __pdf_backend_Page_primitive:e
235 {
236 \prop_map_function:NN \g__pdf_tmpa_prop \pdfdict_item:ne
237 }
238 }
239 〈/pdftex〉
240 〈∗luatex〉
241 % do we need to use some escaping for the values?????
242 \cs_new:Npn __pdf_backend_luastring:n #1
243 {
244 "\tex_luaescapestring:D { \tex_unexpanded:D { #1 } }"
245 }
246 %not used, only there for consistency
247 \cs_new_protected:Npn __pdf_backend_Page_primitive:n #1
248 {
249 \tex_latelua:D
250 {
251 pdf.setpageattributes(__pdf_backend_luastring:n { #1 })
252 }
253 }
254 % the command to store default values.
255 % Uses a prop with pdflatex + dvi,
256 % sets a lua table with lualatex
257 \cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2
258 {
259 \tex_directlua:D
260 {
261 ltx.__pdf.backend_Page_gput
262 (
263 __pdf_backend_luastring:n { #1 },

7

264 __pdf_backend_luastring:n { #2 }
265)
266 }
267 }
268 % the command to remove a default value.
269 % Uses a prop with pdflatex + dvi,
270 % changes a lua table with lualatex
271 \cs_new_protected:Npn __pdf_backend_Page_gremove:n #1
272 {
273 \tex_directlua:D
274 {
275 ltx.__pdf.backend_Page_gremove (__pdf_backend_luastring:n { #1 })
276 }
277 }
278 % the command used in the document.
279 % direct call of the primitive special with dvips/dvipdfmx
280 % \latelua: fill a page related table with lualatex, merge it with the page
281 % table and push it directly
282 % write to aux and store in prop with pdflatex
283 \cs_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2
284 {
285 \tex_latelua:D
286 {
287 ltx.__pdf.backend_ThisPage_gput
288 (
289 tex.count["g_shipout_readonly_int"],
290 __pdf_backend_luastring:n { #1 },
291 __pdf_backend_luastring:n { #2 }
292)
293 ltx.__pdf.backend_ThisPage_gpush (tex.count["g_shipout_readonly_int"])
294 }
295 }
296 %the code to push the values, used in shipout
297 %merges the two props and then fills the register in pdflatex
298 %merges the two tables (the one is probably still empty) and then fills (in lua) in luatex
299 %issues the values stored in the global prop with dvi
300 \cs_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1
301 {
302 \tex_latelua:D
303 {
304 ltx.__pdf.backend_ThisPage_gpush (tex.count["g_shipout_readonly_int"])
305 }
306 }
307

308 〈/luatex〉
309 〈∗dvipdfmx | xdvipdfmx〉
310 %the primitive
311 \cs_new_protected:Npn __pdf_backend_Page_primitive:n #1
312 {
313 \tex_special:D{pdf:~put~@thispage~<<#1>>}
314 }
315 % the command to store default values.
316 % Uses a prop with pdflatex + dvi,
317 % sets a lua table with lualatex

8

318 \cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2
319 {
320 \pdfdict_gput:nnn {g__pdf_Core/Page}{ #1 }{ #2 }
321 }
322 % the command to remove a default value.
323 % Uses a prop with pdflatex + dvi,
324 % changes a lua table with lualatex
325 \cs_new_protected:Npn __pdf_backend_Page_gremove:n #1
326 {
327 \pdfdict_gremove:nn {g__pdf_Core/Page}{ #1 }
328 }
329 % the command used in the document.
330 % direct call of the primitive special with dvips/dvipdfmx
331 % \latelua: fill a page related table with lualatex, merge it with the page
332 % table and push it directly
333 % write to aux and store in prop with pdflatex
334 \cs_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2
335 {
336 __pdf_backend_Page_primitive:n { /#1~#2 }
337 }
338 %the code to push the values, used in shipout
339 %merges the two props and then fills the register in pdflatex
340 %merges the two tables (the one is probably still empty)
341 % and then fills (in lua) in luatex
342 %issues the values stored in the global prop with dvi
343 \cs_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1
344 {
345 __pdf_backend_Page_primitive:e
346 { \pdfdict_use:n { g__pdf_Core/Page} }
347 }
348 〈/dvipdfmx | xdvipdfmx〉
349 〈∗dvips〉
350 \cs_new_protected:Npn __pdf_backend_Page_primitive:n #1
351 {
352 \tex_special:D{ps:~[{ThisPage}<<#1>>~/PUT~pdfmark} %]
353 }
354 % the command to store default values.
355 % Uses a prop with pdflatex + dvi,
356 % sets a lua table with lualatex
357 \cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2
358 {
359 \pdfdict_gput:nnn {g__pdf_Core/Page}{ #1 }{ #2 }
360 }
361 % the command to remove a default value.
362 % Uses a prop with pdflatex + dvi,
363 % changes a lua table with lualatex
364 \cs_new_protected:Npn __pdf_backend_Page_gremove:n #1
365 {
366 \pdfdict_gremove:nn {g__pdf_Core/Page}{ #1 }
367 }
368 % the command used in the document.
369 % direct call of the primitive special with dvips/dvipdfmx
370 % \latelua: fill a page related table with lualatex, merge it with the page
371 % table and push it directly

9

372 % write to aux and store in prop with pdflatex
373 \cs_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2
374 {
375 __pdf_backend_Page_primitive:n { /#1~#2 }
376 }
377 %the code to push the values, used in shipout
378 %merges the two props and then fills the register in pdflatex
379 %merges the two tables (the one is probably still empty)
380 %and then fills (in lua) in luatex
381 %issues the values stored in the global prop with dvi
382 \cs_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1
383 {
384 __pdf_backend_Page_primitive:e
385 { \pdfdict_use:n { g__pdf_Core/Page} }
386 }
387 〈/dvips〉
388 〈∗dvisvgm〉
389 % mostly only dummies ...
390 \cs_new_protected:Npn __pdf_backend_Page_primitive:n #1
391 {}
392 % Uses a prop with pdflatex + dvi,
393 \cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2
394 {
395 \pdfdict_gput:nnn {g__pdf_Core/Page}{ #1 }{ #2 }
396 }
397 % the command to remove a default value.
398 % Uses a prop with pdflatex + dvi,
399 \cs_new_protected:Npn __pdf_backend_Page_gremove:n #1
400 {
401 \pdfdict_gremove:nn {g__pdf_Core/Page}{ #1 }
402 }
403 % the command used in the document.
404 \cs_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2
405 {}
406 %the code to push the values, used in shipout
407 \cs_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1
408 {}
409 〈/dvisvgm〉
410 〈∗drivers〉
411 \cs_generate_variant:Nn __pdf_backend_Page_primitive:n { e }
412 〈/drivers〉

(End of definition for __pdf_backend_Page_primitive:n and others.)

1.9 “Page/Resources”: ExtGState, ColorSpace, Shading, Pat-
tern

Path: Page/Resources/ExtGState etc. The actual output of the resources is handled
together with the bdc/Properties. Here is only special code.

\c__pdf_backend_PageResources_clist The names are quite often needed a similar list is now in l3pdfmanagement. Perhaps it
should be merged.

413 〈∗drivers〉
414 \clist_const:Nn \c__pdf_backend_PageResources_clist

10

415 {
416 ExtGState,
417 ColorSpace,
418 Pattern,
419 Shading,
420 }
421 〈/drivers〉

(End of definition for \c__pdf_backend_PageResources_clist.)
Now the backend commands the command to fill the register and to push the values.

__pdf_backend_PageResources_gput:nnn stores values for the page resources.
#1 : name of the resource (ExtGState, ColorSpace, Shading, Pattern)
#2 : a pdf name without slash
#3 : value

__pdf_backend_PageResources_obj_gpush:
This pushes out the objects. It should be a no-op with xdvipdfmx and dvips as it currently
issued in the end-of-run hook! create the backend objects:

422 〈∗pdftex | luatex〉
423 \clist_map_inline:Nn \c__pdf_backend_PageResources_clist
424 {
425 \pdf_object_new:n {__pdf/Page/Resources/#1}
426 \cs_if_exist:NT \tex_directlua:D
427 {
428 \tex_directlua:D
429 {
430 ltx.__pdf.object["__pdf/Page/Resources/#1"]
431 =
432 "\pdf_object_ref:n{__pdf/Page/Resources/#1}"
433 }
434 }
435 }
436 〈/pdftex | luatex〉

values are only stored in a prop and will be output at end document. luatex must also
trigger the lua side

437 〈∗luatex〉
438 \cs_new_protected:Npn __pdf_backend_PageResources_gput:nnn #1 #2 #3
439 {
440 \pdfdict_gput:nnn {g__pdf_Core/Page/Resources/#1} { #2 }{ #3 }
441 \tex_directlua:D{ltx.__pdf.Page.Resources.#1=true}
442 \tex_directlua:D
443 {
444 ltx.pdf.Page_Resources_gpush(tex.count["g_shipout_readonly_int"])
445 }
446 }
447 〈/luatex〉
448 〈∗pdftex〉
449 \cs_new_protected:Npn __pdf_backend_PageResources_gput:nnn #1 #2 #3
450 {
451 \pdfdict_gput:nnn {g__pdf_Core/Page/Resources/#1} { #2 }{ #3 }
452 }
453 〈/pdftex〉

11

code for end of document code
454 〈∗pdftex | luatex〉
455 \cs_new_protected:Npn __pdf_backend_PageResources_obj_gpush:
456 {
457 \clist_map_inline:Nn \c__pdf_backend_PageResources_clist
458 {
459 \prop_if_empty:cF
460 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/##1} }
461 {
462 \pdf_object_write:nne
463 { __pdf/Page/Resources/##1 } { dict }
464 { \pdfdict_use:n { g__pdf_Core/Page/Resources/##1} }
465 }
466 }
467 }
468 〈/pdftex | luatex〉

xdvipdfmx

doesn’t work correctly with object names ... https://tug.org/piper-
mail/dvipdfmx/2019-August/000021.html, so we use this must be issued on every page!
objects should not only be created but also initialized initialization should be done
before anyone tries to write so we add rules for the backend. The push command should
not be used as it is in the wrong end document hook. If needed a new command must
be added.

469 〈∗dvipdfmx | xdvipdfmx〉
470 〈xdvipdfmx〉\hook_gset_rule:nnnn{shipout/firstpage}{l3backend-xetex}{after}{pdf}
471 〈dvipdfmx〉\hook_gset_rule:nnnn{shipout/firstpage}{l3backend-dvipdfmx}{after}{pdf}
472 %
473 \clist_map_inline:Nn \c__pdf_backend_PageResources_clist
474 {
475 \pdf_object_new:n { __pdf/Page/Resources/#1 }
476 \hook_gput_code:nnn
477 {shipout/firstpage}
478 {pdf}
479 {\pdf_object_write:nnn { __pdf/Page/Resources/#1 } { dict } {}}
480 }
481 \cs_new_protected:Npn __pdf_backend_PageResources:n #1
482 {
483 __pdf_backend:n {put~@resources~<<#1>>}
484 }
485 \cs_new_protected:Npn __pdf_backend_PageResources_gput:nnn #1 #2 #3
486 {
487 % this is not used for output, but there is a test if the resource is empty
488 \prop_gput:cne { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/#1} }
489 { \str_convert_pdfname:n {#2} }{ #3 }
490 %objects are not filled with \pdf_object_write as this is not additive!
491 __pdf_backend:e
492 {
493 put~\pdf_object_ref:n {__pdf/Page/Resources/#1}<</#2~#3>>
494 }
495 }
496

497 \cs_new_protected:Npn __pdf_backend_PageResources_obj_gpush: {}
498 〈/dvipdfmx | xdvipdfmx〉

12

dvips unneeded, or no-op. The push command should not be used as it is in the wrong
end document hook. If needed a new command must be added.

499 〈∗dvips〉
500 \cs_new_protected:Npn __pdf_backend_PageResources:n #1 {}
501 \cs_new_protected:Npn __pdf_backend_PageResources_gput:nnn #1 #2 #3
502 { %only for the show command TEST!!
503 \pdfdict_gput:nnn {g__pdf_Core/Page/Resources/#1} { #2 }{ #3 }
504 }
505 \cs_new_protected:Npn __pdf_backend_PageResources_obj_gpush: {}
506 〈/dvips〉

dvipsvgm unneeded, or no-op
507 〈∗dvisvgm〉
508 \cs_new_protected:Npn __pdf_backend_PageResources:n #1 {}
509 \cs_new_protected:Npn __pdf_backend_PageResources_gput:nnn #1 #2 #3
510 { %only for the show command TEST!!
511 \pdfdict_gput:nnn {g__pdf_Core/Page/Resources/#1} { #2 }{ #3 }
512 }
513 \cs_new_protected:Npn __pdf_backend_PageResources_obj_gpush: {}
514 〈/dvisvgm〉

(End of definition for __pdf_backend_PageResources_gput:nnn and __pdf_backend_PageResources_-
obj_gpush:.)

1.9.1 Page resources /Properties + BDC operators

__pdf_backend_bdc:nn
__pdf_backend_shipout_bdc:ee

__pdf_backend_bdcobject:nn
__pdf_backend_bdcobject:n

__pdf_backend_bmc:n
__pdf_backend_emc:

__pdf_backend_PageResources_gpush:n

__pdf_backend_bdc:nn, __pdf_backend_shipout_bdc:ee, __pdf_backend_bdcobject:nn,
__pdf_backend_bdcobject:n, __pdf_backend_bmc:n and __pdf_backend_emc: are
the backend command that create the bdc/emc marker and store the properties.
__pdf_backend_PageResources_gpush:n outputs the /Properties and/or the other re-
sources for the current page.

pdftex and luatex (and perhaps dvips ...) need to know if there are in a xform stream
...

515 〈∗drivers〉
516 \bool_new:N \l__pdf_backend_xform_bool
517 〈/drivers〉

dvips is easy: create an object, and reference it in the bdc ghostscript will then au-
tomatically replace it by a name and add the name to the /Properties dict, special vari-
ant von accsupp https://chat.stackexchange.com/transcript/message/50831812#
50831812

518 〈∗dvips〉
519 %
520 \cs_set_protected:Npn __pdf_backend_bdc:nn #1 #2 % #1 eg. Span, #2: dict_content
521 {
522 __pdf_backend_pdfmark:n{/#1~<<#2>>~/BDC}
523 }

There is not difference here between inline and property BDC, it is always a property:
524 \cs_set_eq:NN __pdf_backend_bdc_contobj:nn __pdf_backend_bdc:nn
525 \cs_set_eq:NN __pdf_backend_bdc_contstream:nn __pdf_backend_bdc:nn
526

527 \cs_new_protected:Npn __pdf_backend_bdc_shipout:ee #1 #2 % #1 eg. Span, #2: dict_content
528 {

13

https://chat.stackexchange.com/transcript/message/50831812#50831812
https://chat.stackexchange.com/transcript/message/50831812#50831812

529 __kernel_backend_shipout_literal:e
530 {ps: SDict ~ begin ~ mark /#1~<<#2>>~/BDC ~ pdfmark ~ end }
531 }
532

533 \cs_set_protected:Npn __pdf_backend_bdcobject:nn #1 #2 % #1 eg. Span, #2: object name
534 {
535 __pdf_backend_pdfmark:e{/#1~\pdf_object_ref:n{#2}~/BDC}
536 }
537 \cs_set_protected:Npn __pdf_backend_bdcobject:n #1 % #1 eg. Span,
538 {
539 __pdf_backend_pdfmark:e{/#1~__pdf_backend_object_last:~/BDC}
540 }
541 \cs_set_protected:Npn __pdf_backend_emc:
542 {
543 __pdf_backend_pdfmark:n{/EMC} %
544 }
545 \cs_set_protected:Npn __pdf_backend_bmc:n #1
546 {
547 __pdf_backend_pdfmark:n{/#1~/BMC} %
548 }
549 \cs_new_protected:Npn __pdf_backend_PageResources_gpush:n #1 {}
550

551 〈/dvips〉
552 〈∗dvisvgm〉
553 % dvisvgm should do nothing
554 %
555 \cs_set_protected:Npn __pdf_backend_bdc:nn #1 #2 % #1 eg. Span, #2: dict_content
556 {}
557 \cs_set_eq:NN __pdf_backend_bdc_contobj:nn __pdf_backend_bdc:nn
558 \cs_set_eq:NN __pdf_backend_bdc_contstream:nn __pdf_backend_bdc:nn
559

560 \cs_set_protected:Npn __pdf_backend_shipout_bdc:ee #1 #2 % #1 eg. Span, #2: dict_content
561 {}
562 \cs_set_protected:Npn __pdf_backend_bdcobject:nn #1 #2 % #1 eg. Span, #2: object name
563 {}
564 \cs_set_protected:Npn __pdf_backend_bdcobject:n #1 % #1 eg. Span,
565 {}
566 \cs_set_protected:Npn __pdf_backend_emc:
567 {}
568 \cs_set_protected:Npn __pdf_backend_bmc:n #1
569 {}
570 \cs_new_protected:Npn __pdf_backend_PageResources_gpush:n #1 {}
571

572 〈/dvisvgm〉
573 %
574 % xetex has to create the entries in the /Properties manually
575 % (like the other backends)
576 % use pdfbase special
577 % https://chat.stackexchange.com/transcript/message/50832016#50832016
578 % the property is added to xform resources automatically,
579 % no need to worry about it.
580 〈∗dvipdfmx | xdvipdfmx〉
581 \cs_set_protected:Npn __pdf_backend_bdcobject:nn #1 #2 % #1 eg. Span, #2: object name
582 {

14

583 \int_gincr:N \g__pdf_backend_name_int
584 __kernel_backend_literal:e
585 {
586 pdf:code~/#1/l3pdf\int_use:N\g__pdf_backend_name_int\c_space_tl BDC
587 }
588 __kernel_backend_literal:e
589 {
590 pdf:put~@resources~
591 <<
592 /Properties~
593 <<
594 /l3pdf\int_use:N\g__pdf_backend_name_int\c_space_tl
595 \pdf_object_ref:n { #2 }
596 >>
597 >>
598 }
599 }
600 \cs_set_protected:Npn __pdf_backend_bdcobject:n #1 % #1 eg. Span
601 {
602 \int_gincr:N \g__pdf_backend_name_int
603 __kernel_backend_literal:e
604 {
605 pdf:code~/\exp_not:n{#1}/l3pdf\int_use:N\g__pdf_backend_name_int\c_space_tl BDC
606 }
607 __kernel_backend_literal:e
608 {
609 pdf:put~@resources~
610 <<
611 /Properties~
612 <<
613 /l3pdf\int_use:N\g__pdf_backend_name_int\c_space_tl
614 __pdf_backend_object_last:
615 >>
616 >>
617 }
618 }
619 \cs_set_protected:Npn __pdf_backend_bmc:n #1
620 {
621 __kernel_backend_literal:n {pdf:code~/#1~BMC} %pdfbase
622 }
623

624 %this require management
625 \cs_set_protected:Npn __pdf_backend_bdc_contobj:nn #1 #2
626 {
627 \pdf_object_unnamed_write:nn { dict }{ #2 }
628 __pdf_backend_bdcobject:n { #1 }
629 }
630

631 \cs_set_protected:Npn __pdf_backend_bdc_contstream:nn #1 #2
632 {
633 __kernel_backend_literal:n {pdf:code~ /#1~<<#2>>~BDC }
634 }
635

636 \cs_set_protected:Npn __pdf_backend_bdc:nn #1 #2

15

637 {
638 \cs_gset_eq:NN __pdf_backend_bdc:nn __pdf_backend_bdc_contobj:nn
639 __pdf_backend_bdc:nn {#1}{#2}
640 }
641

642 \cs_set_protected:Npn __pdf_backend_bdc_shipout_contstream:ee #1 #2
643 {
644 __kernel_backend_shipout_literal:e {pdf:code~ /#1~<<#2>>~BDC }
645 }
646 \cs_set_eq:NN __pdf_backend_bdc_shipout:ee __pdf_backend_bdc_shipout_contstream:ee
647

648 \cs_set_protected:Npn __pdf_backend_emc:
649 {
650 __kernel_backend_literal:n {pdf:code~EMC} %pdfbase
651 }
652 % properties are handled automatically, but the other resources should be added
653 % at shipout
654 \cs_new_protected:Npn __pdf_backend_PageResources_gpush:n #1
655 {
656 \clist_map_inline:Nn \c__pdf_backend_PageResources_clist
657 {
658 \prop_if_empty:cF { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/##1} }
659 {
660 __kernel_backend_literal:e
661 {
662 pdf:put~@resources~
663 <</##1~\pdf_object_ref:n {__pdf/Page/Resources/##1}>>
664 }
665 }
666 }
667 }
668 〈/dvipdfmx | xdvipdfmx〉
669 % luatex + pdftex
670 〈∗luatex〉
671 \cs_set_protected:Npn __pdf_backend_bdcobject:nn #1 #2 % #1 eg. Span, #2: object name
672 {
673 \int_gincr:N \g__pdf_backend_name_int
674 __kernel_backend_literal_page:e
675 { /#1 ~ /l3pdf\int_use:N\g__pdf_backend_name_int\c_space_tl BDC }
676 \bool_if:NTF \l__pdf_backend_xform_bool
677 {
678 \pdfdict_gput:nee
679 { g__pdf_Core/Xform/Resources/Properties }
680 { l3pdf\int_use:N\g__pdf_backend_name_int }
681 { \pdf_object_ref:n { #2 } }
682 }
683 {
684 \exp_args:Ne \tex_latelua:D
685 {
686 ltx.pdf.Page_Resources_Properties_gput
687 (
688 tex.count["g_shipout_readonly_int"],
689 "l3pdf\int_use:N\g__pdf_backend_name_int",
690 "\pdf_object_ref:n { #2 }"

16

691)
692 }
693 }
694 }
695 \cs_set_protected:Npn __pdf_backend_bdcobject:n #1% #1 eg. Span
696 {
697 \int_gincr:N \g__pdf_backend_name_int
698 __kernel_backend_literal_page:e
699 { /\exp_not:n{#1} ~ /l3pdf\int_use:N\g__pdf_backend_name_int\c_space_tl BDC }
700 \bool_if:NTF \l__pdf_backend_xform_bool
701 {
702 \pdfdict_gput:nee %no handler needed
703 { g__pdf_Core/Xform/Resources/Properties }
704 { l3pdf\int_use:N\g__pdf_backend_name_int }
705 { __pdf_backend_object_last: }
706 }
707 {
708 \exp_args:Ne \tex_latelua:D
709 {
710 ltx.pdf.Page_Resources_Properties_gput
711 (
712 tex.count["g_shipout_readonly_int"],
713 "l3pdf\int_use:N\g__pdf_backend_name_int",
714 "__pdf_backend_object_last:"
715)
716 }
717 }
718 }
719 \cs_set_protected:Npn __pdf_backend_bmc:n #1
720 {
721 __kernel_backend_literal_page:n { /#1~BMC }
722 }
723 \cs_set_protected:Npn __pdf_backend_bdc_contobj:nn #1 #2
724 {
725 \pdf_object_unnamed_write:nn { dict } { #2 }
726 __pdf_backend_bdcobject:n { #1 }
727 }
728 \cs_set_protected:Npn __pdf_backend_bdc_contstream:nn #1 #2
729 {
730 __kernel_backend_literal_page:n { /#1~<<#2>>~BDC }
731 }
732

733 \cs_set_eq:NN __pdf_backend_bdc:nn __pdf_backend_bdc_contstream:nn
734

735 \cs_set_protected:Npn __pdf_backend_bdc_shipout_contstream:ee #1 #2
736 {
737 __kernel_backend_shipout_literal_page:e { /#1~<<#2>>~BDC }
738 }
739 \cs_set_eq:NN __pdf_backend_bdc_shipout:ee __pdf_backend_bdc_shipout_contstream:ee
740

741 \cs_set_protected:Npn __pdf_backend_emc:
742 {
743 __kernel_backend_literal_page:n { EMC }
744 }

17

745

746 \cs_new_protected:Npn __pdf_backend_PageResources_gpush:n #1 {}
747 〈/luatex〉

pdflatex is the most complicated if we want to use properties as it has to go through the
aux ... the push command is extended to take other resources too

748 〈∗pdftex〉
749 \cs_set_protected:Npn __pdf_backend_bdcobject:nn #1 #2 % #1 eg. Span, #2: object name
750 {
751 \int_gincr:N \g__pdf_backend_name_int
752 __kernel_backend_literal_page:e
753 { /#1 ~ /l3pdf\int_use:N\g__pdf_backend_name_int\c_space_tl BDC }
754 % code to set the property
755 \int_gincr:N\g__pdf_backend_resourceid_int
756 \bool_if:NTF \l__pdf_backend_xform_bool
757 {
758 \pdfdict_gput:nee %no handler needed
759 { g__pdf_Core/Xform/Resources/Properties }
760 { l3pdf\int_use:N\g__pdf_backend_resourceid_int }
761 { \pdf_object_ref:n { #2 } }
762 }
763 {
764 __pdf_backend_record_abspage:e {l3pdf\int_use:N\g__pdf_backend_resourceid_int}
765 \tl_set:Ne \l__pdf_tmpa_tl
766 {
767 __pdf_backend_ref_abspage:e{l3pdf\int_use:N\g__pdf_backend_resourceid_int}
768 }
769 \pdfdict_if_exist:nF { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }
770 {
771 \pdfdict_new:n { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }
772 }
773 \pdfdict_gput:nee
774 { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }
775 { l3pdf\int_use:N\g__pdf_backend_resourceid_int }
776 { \pdf_object_ref:n{#2} }
777 }
778 }
779 \cs_set_protected:Npn __pdf_backend_bdcobject:n #1% #1 eg. Span
780 {
781 \int_gincr:N \g__pdf_backend_name_int
782 __kernel_backend_literal_page:e
783 { /\exp_not:n{#1} ~ /l3pdf\int_use:N\g__pdf_backend_name_int\c_space_tl BDC }
784 % code to set the property
785 \int_gincr:N\g__pdf_backend_resourceid_int
786 \bool_if:NTF \l__pdf_backend_xform_bool
787 {
788 \pdfdict_gput:nee
789 { g__pdf_Core/Xform/Resources/Properties }
790 { l3pdf\int_use:N\g__pdf_backend_resourceid_int }
791 { __pdf_backend_object_last: }
792 }
793 {
794 __pdf_backend_record_abspage:e{l3pdf\int_use:N\g__pdf_backend_resourceid_int}
795 \tl_set:Ne \l__pdf_tmpa_tl

18

796 {
797 __pdf_backend_ref_abspage:e{l3pdf\int_use:N\g__pdf_backend_resourceid_int}
798 }
799 \pdfdict_if_exist:nF { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }
800 {
801 \pdfdict_new:n { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }
802 }
803 \pdfdict_gput:nee
804 { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }
805 { l3pdf\int_use:N\g__pdf_backend_resourceid_int }
806 { __pdf_backend_object_last: }
807 %\pdfdict_show:n { g_backend_Page\l__pdf_tmpa_tl/Resources/Properties }
808 }
809 }
810 \cs_set_protected:Npn __pdf_backend_bmc:n #1
811 {
812 __kernel_backend_literal_page:n { /#1~BMC }
813 }
814 \cs_set_protected:Npn __pdf_backend_bdc_contobj:nn #1 #2
815 {
816 \pdf_object_unnamed_write:nn { dict } { #2 }
817 __pdf_backend_bdcobject:n { #1 }
818 }
819 \cs_set_protected:Npn __pdf_backend_bdc_contstream:nn #1 #2
820 {
821 __kernel_backend_literal_page:n { /#1~<<#2>>~BDC }
822 }

We use by default the direct BDC.
823 \cs_set_eq:NN __pdf_backend_bdc:nn __pdf_backend_bdc_contstream:nn
824

825 \cs_set_protected:Npn __pdf_backend_bdc_shipout_contstream:ee #1 #2
826 {
827 __kernel_backend_shipout_literal_page:e { /#1~<<#2>>~BDC }
828 }
829 \cs_set_eq:NN __pdf_backend_bdc_shipout:ee __pdf_backend_bdc_shipout_contstream:ee
830

831

832 \cs_set_protected:Npn __pdf_backend_emc:
833 {
834 __kernel_backend_literal_page:n { EMC }
835 }
836

837 \cs_new:Npn __pdf_backend_PageResources_gpush_aux:n #1 %#1 ExtGState etc
838 {
839 \prop_if_empty:cF
840 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/#1} }
841 {
842 \pdfdict_item:ne { #1 }{ \pdf_object_ref:n {__pdf/Page/Resources/#1}}
843 }
844 }
845

846 \cs_new_protected:Npn __pdf_backend_PageResources_gpush:n #1
847 {
848 \exp_args:NNe \tex_global:D \tex_pdfpageresources:D

19

849 {
850 \prop_if_exist:cT
851 { __kernel_pdfdict_name:n { g__pdf_Core/backend_Page#1/Resources/Properties } }
852 {
853 /Properties~
854 <<
855 \prop_map_function:cN
856 { __kernel_pdfdict_name:n { g__pdf_Core/backend_Page#1/Resources/Properties } }
857 \pdfdict_item:ne
858 >>
859 }
860 %% add ExtGState etc
861 \clist_map_function:NN
862 \c__pdf_backend_PageResources_clist
863 __pdf_backend_PageResources_gpush_aux:n
864 }
865 }
866

867 〈/pdftex〉

(End of definition for __pdf_backend_bdc:nn and others.)

1.10 “Catalog” & subdirectories (pdfcatalog)
The backend command is already in the driver: __pdf_backend_catalog_gput:nn

1.10.1 Special case: the /Names/EmbeddedFiles dictionary

Entries to /Names are handled differently, in part (/Desc) it is automatic, for other special
commands like \pdfnames must be used. For EmbeddedFiles dvips wants code for every
file and then creates the Name tree automatically. Other name trees are ignored. TODO:
Currently the code for EmbeddedFiles is still a bit different but this should be merged,
all name trees should be handled with the same code.

868 % pdflatex
869 〈∗pdftex〉
870 \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 %#1 name of name tree, #2 array content
871 {
872 \pdf_object_unnamed_write:nn {dict} {/Names [#2] }
873 \tex_pdfnames:D {/#1~\pdf_object_ref_last:}
874 }
875 〈/pdftex〉
876 〈∗luatex〉
877 \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 %#1 name of name tree, #2 array content
878 {
879 \pdf_object_unnamed_write:nn {dict} {/Names [#2] }
880 \tex_pdfextension:D~names~ {/#1~\pdf_object_ref_last:}
881 }
882 〈/luatex〉
883 〈∗dvipdfmx | xdvipdfmx〉
884 \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 %#1 name of name tree, #2 array content
885 {
886 \pdf_object_unnamed_write:nn {dict} {/Names [#2] }
887 __pdf_backend:e {put~@names~<</#1~\pdf_object_ref_last: >>}
888 }

20

889 〈/dvipdfmx | xdvipdfmx〉
890

891 %dvips: noop
892 〈∗dvips〉
893 \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 {}
894 〈/dvips〉
895 %dvisvgm: noop
896 〈∗dvisvgm〉
897 \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 {}
898 〈/dvisvgm〉

EmbeddedFiles is a bit special. For once we need backend commands for dvips. But we
want also an option to create the name on the fly.

__pdf_backend_NamesEmbeddedFiles_add:nn dvips need special backend code to create the name tree. With the other engines it does
nothing.

899 〈∗pdftex | luatex | dvipdfmx | xdvipdfmx〉
900 \cs_new_protected:Npn __pdf_backend_NamesEmbeddedFiles_add:nn #1 #2 {}
901 〈/pdftex | luatex | dvipdfmx | xdvipdfmx〉
902 〈∗dvips〉
903 \cs_new_protected:Npn __pdf_backend_NamesEmbeddedFiles_add:nn #1 #2
904 {
905 __pdf_backend_pdfmark:e
906 {
907 /Name~#1~
908 /FS~#2~
909 /EMBED
910 }
911 }
912 〈/dvips〉
913 〈∗dvisvgm〉
914 %no op. Or is there any sensible use for it?
915 \cs_new_protected:Npn __pdf_backend_NamesEmbeddedFiles_add:nn #1 #2
916 {}
917

918 〈/dvisvgm〉

(End of definition for __pdf_backend_NamesEmbeddedFiles_add:nn.)

1.10.2 Additional annotation commands

Starting with texlive 2021 pdftex and luatex offer commands to interrupt a link. That
can for example be used to exclude the header and footer from the link. The backend
support is now in l3kernel. We only provide the user command.

919 〈∗pdftex〉
920 \cs_if_exist:NT \pdfrunninglinkoff
921 {
922 \cs_set_protected:Npn __pdfannot_backend_link_off:
923 {
924 \pdfrunninglinkoff
925 }
926 \cs_set_protected:Npn __pdfannot_backend_link_on:
927 {
928 \pdfrunninglinkon

21

929 }
930 }
931 〈/pdftex〉

1.10.3 Split links

With luatex we use luacode to handle link annotations. This allows us to retrieve the
annotations as needed by the tagging code. It also allow to prevent that link areas spill
over into unwanted regions like footnotes. See the documentation in lualinksplit.lua for
more details. We therefore add a plug for the build/column/footnotes.

932 〈∗luatex〉
933 \lua_load_module:n{lualinksplit}
934 \NewSocketPlug{build/column/footnotes}{lualinksplit}{%
935 \setbox\footins=\vbox{\pdfextension linkstate-2\unvbox\footins}%
936 }
937 \AssignSocketPlug{build/column/footnotes}{lualinksplit}
938 〈/luatex〉

1.10.4 Form XObject / backend

__pdf_backend_xform_new:nnnn #1 : name
#2 : attributes
#3 : resources needed?? or are all resources autogenerated?
#4 : content, this doesn’t need to be a box!

__pdf_backend_xform_use:n
__pdf_backend_xform_ref:n

939 〈∗pdftex〉
940 \cs_new_protected:Npn __pdf_backend_xform_new:nnnn #1 #2 #3 #4
941 % #1 name
942 % #2 attributes
943 % #3 resources
944 % #4 content, not necessarily a box!
945 {
946 \hbox_set:Nn \l__pdf_backend_tmpa_box
947 {
948 \bool_set_true:N \l__pdf_backend_xform_bool
949 \prop_gclear:c {__kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Properties }}
950 #4
951 }
952 %store the dimensions
953 \tl_const:ce
954 { c__pdf_backend_xform_wd_ \tl_to_str:n {#1} _tl }
955 { \tex_the:D \box_wd:N \l__pdf_backend_tmpa_box }
956 \tl_const:ce
957 { c__pdf_backend_xform_ht_ \tl_to_str:n {#1} _tl }
958 { \tex_the:D \box_ht:N \l__pdf_backend_tmpa_box }
959 \tl_const:ce
960 { c__pdf_backend_xform_dp_ \tl_to_str:n {#1} _tl }
961 { \tex_the:D \box_dp:N \l__pdf_backend_tmpa_box }
962 %% do we need to test if #2 and #3 are empty??
963 \tex_immediate:D \tex_pdfxform:D
964 ~ attr ~ { #2 }
965 %% which other resources should be default? Is an argument actually needed?

22

966 ~ resources ~
967 {
968 #3
969 \int_compare:nNnT
970 { \prop_count:c { __kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Properties } } }
971 >
972 { 0 }
973 {
974 /Properties~
975 <<
976 \pdfdict_use:n { g__pdf_Core/Xform/Resources/Properties }
977 >>
978 }
979

980 \prop_if_empty:cF
981 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/ExtGState } }
982 {
983 /ExtGState~ \pdf_object_ref:n { __pdf/Page/Resources/ExtGState }
984 }
985 \prop_if_empty:cF
986 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/Pattern } }
987 {
988 /Pattern~ \pdf_object_ref:n { __pdf/Page/Resources/Pattern }
989 }
990 \prop_if_empty:cF
991 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/Shading } }
992 {
993 /Shading~ \pdf_object_ref:n { __pdf/Page/Resources/Shading }
994 }
995 \prop_if_empty:cF
996 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/ColorSpace } }
997 {
998 /ColorSpace~ \pdf_object_ref:n { __pdf/Page/Resources/ColorSpace }
999 }

1000 }
1001 \l__pdf_backend_tmpa_box
1002 \int_const:cn
1003 { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
1004 { \tex_pdflastxform:D }
1005 }
1006

1007 \cs_new_protected:Npn __pdf_backend_xform_use:n #1
1008 {
1009 \tex_pdfrefxform:D
1010 \int_use:c { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
1011 \scan_stop:
1012 }
1013

1014 \cs_new:Npn __pdf_backend_xform_ref:n #1
1015 {
1016 \int_use:c { c__pdf_backend_xform_ \tl_to_str:n {#1} _int } ~ 0 ~ R
1017 }
1018 〈/pdftex〉
1019 〈∗luatex〉

23

1020 %luatex
1021 %nearly identical but not completely ...
1022 \cs_new_protected:Npn __pdf_backend_xform_new:nnnn #1 #2 #3 #4
1023 % #1 name
1024 % #2 attributes
1025 % #3 resources
1026 % #4 content, not necessarily a box!
1027 {
1028 \hbox_set:Nn \l__pdf_backend_tmpa_box
1029 {
1030 \bool_set_true:N \l__pdf_backend_xform_bool
1031 \prop_gclear:c { __kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Properties } }
1032 #4
1033 }
1034 \tl_const:ce
1035 { c__pdf_backend_xform_wd_ \tl_to_str:n {#1} _tl }
1036 { \tex_the:D \box_wd:N \l__pdf_backend_tmpa_box }
1037 \tl_const:ce
1038 { c__pdf_backend_xform_ht_ \tl_to_str:n {#1} _tl }
1039 { \tex_the:D \box_ht:N \l__pdf_backend_tmpa_box }
1040 \tl_const:ce
1041 { c__pdf_backend_xform_dp_ \tl_to_str:n {#1} _tl }
1042 { \tex_the:D \box_dp:N \l__pdf_backend_tmpa_box }
1043 %% do we need to test if #2 and #3 are empty??
1044 \tex_immediate:D \tex_pdfxform:D
1045 ~ attr ~ { #2 }
1046 %% which resources should be default? Is an argument actually needed?
1047 ~ resources ~
1048 {
1049 #3
1050 \int_compare:nNnT
1051 {\prop_count:c { __kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Properties } }}
1052 >
1053 { 0 }
1054 {
1055 /Properties~
1056 <<
1057 \pdfdict_use:n { g__pdf_Core/Xform/Resources/Properties }
1058 >>
1059 }
1060 \prop_if_empty:cF
1061 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/ExtGState } }
1062 {
1063 /ExtGState~ \pdf_object_ref:n { __pdf/Page/Resources/ExtGState }
1064 }
1065 \prop_if_empty:cF
1066 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/Pattern } }
1067 {
1068 /Pattern~ \pdf_object_ref:n { __pdf/Page/Resources/Pattern }
1069 }
1070 \prop_if_empty:cF
1071 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/Shading } }
1072 {
1073 /Shading~ \pdf_object_ref:n { __pdf/Page/Resources/Shading }

24

1074 }
1075 \prop_if_empty:cF
1076 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/ColorSpace } }
1077 {
1078 /ColorSpace~ \pdf_object_ref:n { __pdf/Page/Resources/ColorSpace }
1079 }
1080 }
1081 \l__pdf_backend_tmpa_box
1082 \int_const:cn
1083 { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
1084 { \tex_pdflastxform:D }
1085 }
1086

1087 \cs_new_protected:Npn __pdf_backend_xform_use:n #1 %protected as with xelatex
1088 {
1089 \tex_pdfrefxform:D \int_use:c
1090 {
1091 c__pdf_backend_xform_ \tl_to_str:n {#1} _int
1092 }
1093 \scan_stop:
1094 }
1095

1096 \cs_new:Npn __pdf_backend_xform_ref:n #1
1097 { \int_use:c { c__pdf_backend_xform_ \tl_to_str:n {#1} _int } ~ 0 ~ R }
1098

1099 〈/luatex〉
1100 〈∗dvipdfmx | xdvipdfmx〉
1101 % xetex
1102 % it needs a bit testing if it really works to set the box to 0 before the special ...
1103 % does it disturb viewing the xobject?
1104 % what happens with the resources (bdc)? (should work as they are specials too)
1105 % xetex requires that the special is in horizontal mode. This means it affects
1106 % typesetting. But we can no delay the whole form code to shipout
1107 % as the object reference and the size is often wanted on the current page.
1108 % so we need to allocate a box - but probably they won't be thousands xform
1109 % in a document so it shouldn't matter.
1110 \cs_new_protected:Npn __pdf_backend_xform_new:nnnn #1 #2 #3 #4
1111 % #1 name
1112 % #2 attributes
1113 % #3 resources
1114 % #4 content, not necessarily a box!
1115 {
1116 \int_gincr:N \g__pdf_backend_object_int
1117 \int_const:cn
1118 { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
1119 { \g__pdf_backend_object_int }
1120 \box_new:c { g__pdf_backend_xform_#1_box }
1121 \hbox_gset:cn { g__pdf_backend_xform_#1_box }
1122 {
1123 \bool_set_true:N \l__pdf_backend_xform_bool
1124 #4
1125 }
1126 \tl_const:ce
1127 { c__pdf_backend_xform_wd_ \tl_to_str:n {#1} _tl }

25

1128 { \tex_the:D \box_wd:c { g__pdf_backend_xform_#1_box } }
1129 \tl_const:ce
1130 { c__pdf_backend_xform_ht_ \tl_to_str:n {#1} _tl }
1131 { \tex_the:D \box_ht:c { g__pdf_backend_xform_#1_box } }
1132 \tl_const:ce
1133 { c__pdf_backend_xform_dp_ \tl_to_str:n {#1} _tl }
1134 { \tex_the:D \box_dp:c { g__pdf_backend_xform_#1_box } }
1135 \box_set_dp:cn { g__pdf_backend_xform_#1_box } { \c_zero_dim }
1136 \box_set_ht:cn { g__pdf_backend_xform_#1_box } { \c_zero_dim }
1137 \box_set_wd:cn { g__pdf_backend_xform_#1_box } { \c_zero_dim }
1138 \hook_gput_next_code:nn {shipout/background}
1139 {
1140 \mode_leave_vertical: %needed, the xform disappears without it.
1141 __pdf_backend:e
1142 {
1143 bxobj ~ __pdf_backend_xform_ref:n { #1 }
1144 \c_space_tl width ~ \pdfxform_wd:n { #1 }
1145 \c_space_tl height ~ \pdfxform_ht:n { #1 }
1146 \c_space_tl depth ~ \pdfxform_dp:n { #1 }
1147 }
1148 \box_use_drop:c { g__pdf_backend_xform_#1_box }
1149 __pdf_backend:e {put ~ @resources ~<<#3>> }
1150 __pdf_backend:e
1151 {
1152 put~ @resources ~
1153 <<
1154 /ExtGState~ \pdf_object_ref:n { __pdf/Page/Resources/ExtGState }
1155 >>
1156 }
1157 __pdf_backend:e
1158 {
1159 put~ @resources ~
1160 <<
1161 /Pattern~ \pdf_object_ref:n { __pdf/Page/Resources/Pattern }
1162 >>
1163 }
1164 __pdf_backend:e
1165 {
1166 put~ @resources ~
1167 <<
1168 /Shading~ \pdf_object_ref:n { __pdf/Page/Resources/Shading }
1169 >>
1170 }
1171 __pdf_backend:e
1172 {
1173 put~ @resources ~
1174 <<
1175 /ColorSpace~
1176 \pdf_object_ref:n { __pdf/Page/Resources/ColorSpace }
1177 >>
1178 }
1179 __pdf_backend:e {exobj ~<<#2>>}
1180 }
1181 }

26

1182

1183

1184

1185 \cs_new:Npn __pdf_backend_xform_ref:n #1
1186 {
1187 @pdf.xform \int_use:c { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
1188 }
1189

1190 \cs_new_protected:Npn __pdf_backend_xform_use:n #1
1191 {
1192 \hbox_set:Nn \l__pdf_backend_tmpa_box
1193 {
1194 __pdf_backend:e
1195 {
1196 uxobj~ __pdf_backend_xform_ref:n { #1 }
1197 }
1198 }
1199 \box_set_wd:Nn \l__pdf_backend_tmpa_box { \pdfxform_wd:n { #1 } }
1200 \box_set_ht:Nn \l__pdf_backend_tmpa_box { \pdfxform_ht:n { #1 } }
1201 \box_set_dp:Nn \l__pdf_backend_tmpa_box { \pdfxform_dp:n { #1 } }
1202 \box_use_drop:N \l__pdf_backend_tmpa_box
1203 }
1204 〈/dvipdfmx | xdvipdfmx〉
1205 〈∗dvisvgm〉
1206 % unclear what it should do!!
1207 \cs_new_protected:Npn __pdf_backend_xform_new:nnnn #1 #2 #3 #4 {}
1208 \cs_new_protected:Npn __pdf_backend_xform_use:n #1 {}
1209 \cs_new:Npn __pdf_backend_xform_ref:n {}
1210 〈/dvisvgm〉

The xform code for dvips is based on code from the attachfile2 package (in atfi-dvips),
along with some ideas from pdfbase and has been corrected with the help of Alexander
Grahn. Details like clipping and landscape will probably be corrected in the future. We
need some temporary variables to store dimensions

1211 〈∗dvips〉
1212 \tl_new:N \l__pdf_backend_xform_tmpwd_tl
1213 \tl_new:N \l__pdf_backend_xform_tmpdp_tl
1214 \tl_new:N \l__pdf_backend_xform_tmpht_tl

1215 \cs_new_protected:Npn__pdf_backend_xform_new:nnnn #1 #2 #3 #4 % #1 name, #2 attribute, #4 content
1216 {
1217 \int_gincr:N \g__pdf_backend_object_int
1218 \int_const:cn
1219 { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
1220 { \g__pdf_backend_object_int }
1221

1222 \hbox_set:Nn \l__pdf_backend_tmpa_box
1223 {
1224 \bool_set_true:N \l__pdf_backend_xform_bool
1225 \prop_gclear:c {__kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Properties }}
1226 #4
1227 }
1228 %store the dimensions
1229 \tl_const:ce
1230 { c__pdf_backend_xform_wd_ \tl_to_str:n {#1} _tl }

27

1231 { \tex_the:D \box_wd:N \l__pdf_backend_tmpa_box }
1232 \tl_const:ce
1233 { c__pdf_backend_xform_ht_ \tl_to_str:n {#1} _tl }
1234 { \tex_the:D \box_ht:N \l__pdf_backend_tmpa_box }
1235 \tl_const:ce
1236 { c__pdf_backend_xform_dp_ \tl_to_str:n {#1} _tl }
1237 { \tex_the:D \box_dp:N \l__pdf_backend_tmpa_box }
1238 %store content dimensions in DPI units (Dots) (code from issue 25)
1239 \tl_set:Ne\l__pdf_backend_xform_tmpwd_tl
1240 {
1241 \dim_to_decimal_in_sp:n{ \box_wd:N \l__pdf_backend_tmpa_box }~
1242 65536~div~72.27~div~DVImag~mul~Resolution~mul~
1243 }
1244 \tl_set:Ne\l__pdf_backend_xform_tmpht_tl
1245 {
1246 \dim_to_decimal_in_sp:n{ \box_ht:N \l__pdf_backend_tmpa_box }~
1247 65536~div~72.27~div~DVImag~mul~VResolution~mul~
1248 }
1249 \tl_set:Ne\l__pdf_backend_xform_tmpdp_tl
1250 {
1251 \dim_to_decimal_in_sp:n{ \box_dp:N \l__pdf_backend_tmpa_box }~
1252 65536~div~72.27~div~DVImag~mul~VResolution~mul~
1253 }
1254 % mirror the box
1255 %\box_scale:Nnn \l__pdf_backend_tmpa_box {1} {-1}
1256 \hbox_set:Nn\l__pdf_backend_tmpb_box
1257 {
1258 __kernel_backend_postscript:e
1259 {
1260 gsave~currentpoint~
1261 initclip~ % restore default clipping path (page device/whole page)
1262 clippath~pathbbox~newpath~pop~pop~
1263 \tl_use:N\l__pdf_backend_xform_tmpdp_tl~add~translate~
1264 mark~
1265 /_objdef~{ pdf.obj \int_use:N\g__pdf_backend_object_int }\c_space_tl~
1266 /BBox[
1267 0~
1268 \tl_use:N\l__pdf_backend_xform_tmpht_tl~
1269 \tl_use:N\l__pdf_backend_xform_tmpwd_tl~
1270 \tl_use:N\l__pdf_backend_xform_tmpdp_tl~
1271 neg
1272]
1273 \str_if_eq:eeF{#1}{}
1274 {
1275 product~(Distiller)~search~{pop~pop~pop~#2}{pop}ifelse~
1276 }
1277 /BP~pdfmark~1~-1~scale~neg~exch~neg~exch~translate
1278 }
1279 \box_use_drop:N\l__pdf_backend_tmpa_box
1280 __kernel_backend_postscript:n
1281 {
1282 mark ~ /EP~pdfmark ~ grestore
1283 }
1284 \str_if_eq:eeF{#1}{}

28

1285 {
1286 __kernel_backend_postscript:e
1287 {
1288 product~(Ghostscript)~search~
1289 {
1290 pop~pop~pop~
1291 mark~
1292 { pdf.obj \int_use:c{c__pdf_backend_xform_ \tl_to_str:n {#1} _int} }
1293 ~<<#2>>~/PUT~pdfmark
1294 }{pop}ifelse
1295 }
1296 }
1297 }
1298 \box_set_dp:Nn \l__pdf_backend_tmpb_box { \c_zero_dim }
1299 \box_set_ht:Nn \l__pdf_backend_tmpb_box { \c_zero_dim }
1300 \box_set_wd:Nn \l__pdf_backend_tmpb_box { \c_zero_dim }
1301 \hook_gput_code:nnn {begindocument/end}{pdfxform}
1302 {
1303 \mode_leave_vertical:
1304 \box_use:N\l__pdf_backend_tmpb_box
1305 }
1306 }
1307

1308

1309 \cs_new_protected:Npn __pdf_backend_xform_use:n #1
1310 {
1311 \hbox_set:Nn \l__pdf_backend_tmpa_box
1312 {
1313 __kernel_backend_postscript:e
1314 {
1315 gsave~currentpoint~translate~1~-1~scale~
1316 mark~{ pdf.obj \int_use:c{c__pdf_backend_xform_ \tl_to_str:n {#1} _int }}~
1317 /SP~pdfmark ~ grestore
1318 }
1319 }
1320 \box_set_wd:Nn \l__pdf_backend_tmpa_box { \pdfxform_wd:n { #1 } }
1321 \box_set_ht:Nn \l__pdf_backend_tmpa_box { \pdfxform_ht:n { #1 } }
1322 \box_set_dp:Nn \l__pdf_backend_tmpa_box { \pdfxform_dp:n { #1 } }
1323 \box_use_drop:N \l__pdf_backend_tmpa_box
1324 }
1325 \cs_new:Npn __pdf_backend_xform_ref:n #1
1326 {
1327 { pdf.obj \int_use:c{c__pdf_backend_xform_ \tl_to_str:n {#1} _int} }
1328 }
1329

1330 〈/dvips〉
1331 〈∗drivers〉
1332 %% all
1333 \prg_new_conditional:Npnn __pdf_backend_xform_if_exist:n #1 { p , T , F , TF }
1334 {
1335 \int_if_exist:cTF { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
1336 { \prg_return_true: }
1337 { \prg_return_false:}
1338 }

29

1339 \prg_new_eq_conditional:NNn \pdfxform_if_exist:n__pdf_backend_xform_if_exist:n
1340 { TF , T , F , p }
1341 〈/drivers〉

(End of definition for __pdf_backend_xform_new:nnnn , __pdf_backend_xform_use:n , and __pdf_-
backend_xform_ref:n.)

1.11 Structure Destinations
Standard destinations consist of a reference to a page in the pdf and instructions how to
display it—typically they will put a specific location in the left top corner of the viewer
and so give the impression that a link jumped to the word in this place. But in reality
they are not connected to the content.

Starting with pdf 2.0 destinations can in a tagged PDF also point to a structure,
to a /StructElem object. GoTo links can then additionally to the /D key pointing to a
page destination also point to such a structure destination with an /SD key. Programs
that e.g. convert such a PDF to html can then create better links. (According to the
reference, PDF-viewer should prefer the structure destination over the page destination,
but as far as it is known this isn’t done yet.)

Currently structure destinations and GoTo links making use of it could natively only
be created with the dvipdfmx backend. With pdftex and lualatex it was only possible
to create a restricted type which used only the “Fit” mode. Starting with TEXlive 2022
(earlier in miktex) both engine will knew new keywords which allow to create structure
destination easily.

The following backend code prepares the use of structure destinations. The general
idea is that if structure destinations are used, they should be used always. So we define
alternative commands which can be activated by mapping them to the standard backend
commands.

The needed code differ depending on if structure objects use standard or indexed
object names. At the end we will probably always use indexed objects, but for now we
offer both options.

\l_pdf_current_structure_destination_tl This command holds the name of the structure object to use in the following commands
which creates a destination. The code which activates structure destinations must also
ensure that it has a sensible, expandable content. tagpdf for example will define it as

\tl_set:Nn \l_pdf_current_structure_destination_tl { __tag/struct/\g__tag_struct_stack_current_tl }

or if indexed structure object names are used

\tl_set:Nn \l_pdf_current_structure_destination_tl { {__tag/struct}{\g__tag_struct_stack_current_tl} }

1342 〈∗drivers〉
1343 \tl_new:N \l_pdf_current_structure_destination_tl
1344 〈/drivers〉

(End of definition for \l_pdf_current_structure_destination_tl.)
We will define alternatives for three backend commands:

__pdf_backend_destination:nn -> __pdf_backend_structure_destination:nn
__pdf_backend_destination:nnnn -> __pdf_backend_structure_destination:nnnn
__pdfannot_backend_link_begin_goto:nnw -> __pdf_backend_link_begin_structure_goto:nnw
__pdf_backend_destination:nn -> __pdf_backend_indexed_structure_destination:nn
__pdf_backend_destination:nnnn -> __pdf_backend_indexed_structure_destination:nnnn
__pdfannot_backend_link_begin_goto:nnw -> __pdf_backend_indexed_link_begin_structure_goto:nnw

30

Activating means mapping them onto the original commands. Be aware that not all
engines and compilation routes support structure destinations, for them the command
will be a no-op.

\pdf_activate_structure_destination:
\pdf_activate_indexed_structure_destination: 1345 〈∗drivers〉

1346 \cs_new_protected:Npn \pdf_activate_structure_destination:
1347 {
1348 \cs_gset_eq:NN __pdf_backend_destination:nn __pdf_backend_structure_destination:nn
1349 \cs_gset_eq:NN __pdf_backend_destination:nnnn __pdf_backend_structure_destination:nnnn
1350 \cs_gset_eq:NN __pdfannot_backend_link_begin_goto:nnw __pdfannot_backend_link_begin_structure_goto:nnw
1351 }
1352 \cs_new_protected:Npn \pdf_activate_indexed_structure_destination:
1353 {
1354 \cs_gset_eq:NN __pdf_backend_destination:nn __pdf_backend_indexed_structure_destination:nn
1355 \cs_gset_eq:NN __pdf_backend_destination:nnnn __pdf_backend_indexed_structure_destination:nnnn
1356 \cs_gset_eq:NN __pdfannot_backend_link_begin_goto:nnw __pdfannot_backend_link_begin_structure_goto:nnw
1357 }
1358 〈/drivers〉

(End of definition for \pdf_activate_structure_destination: and \pdf_activate_indexed_structure_-
destination:.)

Now the driver dependent parts. By default the new commands are simply copies
of the original commands. We adapt them then for the engines and engine version which
provide support for structure destinations.

1359 〈∗drivers〉
1360 \cs_set_eq:NN __pdf_backend_structure_destination:nn __pdf_backend_destination:nn
1361 \cs_set_eq:NN __pdf_backend_structure_destination:nnnn __pdf_backend_destination:nnnn
1362 \cs_set_eq:NN __pdfannot_backend_link_begin_structure_goto:nnw __pdfannot_backend_link_begin_goto:nnw
1363 \cs_set_eq:NN __pdf_backend_indexed_structure_destination:nn __pdf_backend_destination:nn
1364 \cs_set_eq:NN __pdf_backend_indexed_structure_destination:nnnn __pdf_backend_destination:nnnn
1365 〈/drivers〉

__pdf_backend_structure_destination:nn
__pdf_backend_structure_destination:nnnn

__pdfannot_backend_link_begin_structure_goto:nnw

These commands are the backend commands to create a destination. which create also
a structure destination. At first xetex/dvipdfmx. The structure destination is an array,
so we use obj for it so that we can reference it:

1366 〈∗xdvipdfmx | dvipdfmx〉
1367 \cs_set_protected:Npn __pdf_backend_structure_destination:nn #1#2
1368 {
1369 __pdf_backend:e
1370 {
1371 dest ~ (\exp_not:n {#1})
1372 [
1373 @thispage
1374 \str_case:nnF {#2}
1375 {
1376 { xyz } { /XYZ ~ @xpos ~ @ypos ~ null }
1377 { fit } { /Fit }
1378 { fitb } { /FitB }
1379 { fitbh } { /FitBH }
1380 { fitbv } { /FitBV ~ @xpos }
1381 { fith } { /FitH ~ @ypos }
1382 { fitv } { /FitV ~ @xpos }

31

1383 { fitr } { /Fit }
1384 }
1385 { /XYZ ~ @xpos ~ @ypos ~ \fp_eval:n { (#2) / 100 } }
1386]
1387 }

We test if the structure object exist. The object of the structure destination gets the name
@pdf.Sdest.〈destname〉, where 〈destname〉 is the name of the standard destination so
that we can reference it in the GoTo links.

1388 \exp_args:Ne \pdf_object_if_exist:nT { \l_pdf_current_structure_destination_tl }
1389 {
1390 __pdf_backend:e
1391 {
1392 obj ~ @pdf.SDest.\exp_not:n{#1}
1393 [
1394 \exp_args:Ne \pdf_object_ref:n { \l_pdf_current_structure_destination_tl }
1395 \str_case:nnF {#2}
1396 {
1397 { xyz } { /XYZ ~ @xpos ~ @ypos ~ null }
1398 { fit } { /Fit }
1399 { fitb } { /FitB }
1400 { fitbh } { /FitBH }
1401 { fitbv } { /FitBV ~ @xpos }
1402 { fith } { /FitH ~ @ypos }
1403 { fitv } { /FitV ~ @xpos }
1404 { fitr } { /Fit }
1405 }
1406 { /XYZ ~ @xpos ~ @ypos ~ \fp_eval:n { (#2) / 100 } }
1407]
1408 }
1409 }
1410 }

The second destination command is for the boxed destination. Here we need to define
an new auxiliary command:

1411 \cs_new_protected:Npn __pdf_backend_structure_destination_aux:nnnn #1#2#3#4
1412 {
1413 \vbox_to_zero:n
1414 {
1415 __kernel_kern:n {#4}
1416 \hbox:n
1417 {
1418 __pdf_backend:n { obj ~ @pdf_ #2 _llx ~ @xpos }
1419 __pdf_backend:n { obj ~ @pdf_ #2 _lly ~ @ypos }
1420 }
1421 \tex_vss:D
1422 }
1423 __kernel_kern:n {#1}
1424 \vbox_to_zero:n
1425 {
1426 __kernel_kern:n { -#3 }
1427 \hbox:n
1428 {
1429 __pdf_backend:n
1430 {

32

1431 dest ~ (#2)
1432 [
1433 @thispage
1434 /FitR ~
1435 @pdf_ #2 _llx ~ @pdf_ #2 _lly ~
1436 @xpos ~ @ypos
1437]
1438 }

Here we add the structure destination to the same box
1439 \exp_args:Ne \pdf_object_if_exist:nT { \l_pdf_current_structure_destination_tl }
1440 {
1441 __pdf_backend:e
1442 {
1443 obj ~ @pdf.SDest.\exp_not:n{#2}
1444 [
1445 \exp_args:Ne \pdf_object_ref:n { \l_pdf_current_structure_destination_tl }
1446 /FitR ~
1447 @pdf_ #2 _llx ~ @pdf_ #2 _lly ~
1448 @xpos ~ @ypos
1449]
1450 }
1451 }
1452 }
1453 \tex_vss:D
1454 }
1455 __kernel_kern:n { -#1 }
1456 }

And now we redefine the destination command:
1457 \cs_set_protected:Npn __pdf_backend_structure_destination:nnnn #1#2#3#4
1458 {
1459 \exp_args:Ne __pdf_backend_structure_destination_aux:nnnn
1460 { \dim_eval:n {#2} } {#1} {#3} {#4}
1461 }

At last the goto link.
1462 \cs_set_protected:Npn __pdfannot_backend_link_begin_structure_goto:nnw #1#2
1463 {
1464 __pdfannot_backend_link_begin:n { #1 /Subtype /Link /A << /S /GoTo /D (#2) /SD~@pdf.SDest.#2 >> }
1465 }
1466 〈/xdvipdfmx | dvipdfmx〉

Now pdftex. We only redefine for version 1.40 revision 24 or later.
1467 〈∗pdftex〉
1468 \bool_lazy_and:nnT
1469 { \int_compare_p:nNn {\tex_pdftexversion:D } > {139} }
1470 { \int_compare_p:nNn {\tex_pdftexrevision:D } > {23} }
1471 {
1472 \cs_set_protected:Npn __pdf_backend_structure_destination:nn #1#2
1473 {
1474 \tex_pdfdest:D
1475 name {#1}
1476 \str_case:nnF {#2}
1477 {
1478 { xyz } { xyz }

33

1479 { fit } { fit }
1480 { fitb } { fitb }
1481 { fitbh } { fitbh }
1482 { fitbv } { fitbv }
1483 { fith } { fith }
1484 { fitv } { fitv }
1485 { fitr } { fitr }
1486 }
1487 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1488 \scan_stop:
1489 \exp_args:Ne \pdf_object_if_exist:nT { \l_pdf_current_structure_destination_tl }
1490 {
1491 \tex_pdfdest:D
1492 struct~
1493 \int_use:c
1494 { c__pdf_object_ \exp_args:Ne \tl_to_str:n {\l_pdf_current_structure_destination_tl} _int }~
1495 name {#1}
1496 \str_case:nnF {#2}
1497 {
1498 { xyz } { xyz }
1499 { fit } { fit }
1500 { fitb } { fitb }
1501 { fitbh } { fitbh }
1502 { fitbv } { fitbv }
1503 { fith } { fith }
1504 { fitv } { fitv }
1505 { fitr } { fitr }
1506 }
1507 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1508 \scan_stop:
1509 }
1510 }
1511 \cs_set_protected:Npn __pdf_backend_structure_destination:nnnn #1#2#3#4
1512 {
1513 \tex_pdfdest:D
1514 name {#1}
1515 fitr ~
1516 width \dim_eval:n {#2} ~
1517 height \dim_eval:n {#3} ~
1518 depth \dim_eval:n {#4} \scan_stop:
1519 \exp_args:Ne \pdf_object_if_exist:nT { \l_pdf_current_structure_destination_tl }
1520 {
1521 \tex_pdfdest:D
1522 struct~
1523 \int_use:c
1524 { c__pdf_object_ \exp_args:Ne \tl_to_str:n {\l_pdf_current_structure_destination_tl} _int }~
1525 name {#1}
1526 fitr ~
1527 width \dim_eval:n {#2} ~
1528 height \dim_eval:n {#3} ~
1529 depth \dim_eval:n {#4} \scan_stop:
1530 }
1531 }
1532 \cs_set_protected:Npn __pdfannot_backend_link_begin_structure_goto:nnw #1#2

34

1533 {
1534 __pdfannot_backend_link_begin:nnnw {#1} { goto~struct~name~{#2}~name } {#2}
1535 }
1536 }
1537 〈/pdftex〉

luatex is quite similar to pdftex. Mostly the test for the version is different
1538 〈∗luatex〉
1539 \int_compare:nNnT {\directlua{tex.print(status.list()["development_id"])} } > {7468}
1540 {
1541 \cs_set_protected:Npn __pdf_backend_structure_destination:nn #1#2
1542 {
1543 \tex_pdfextension:D dest
1544 name {#1}
1545 \str_case:nnF {#2}
1546 {
1547 { xyz } { xyz }
1548 { fit } { fit }
1549 { fitb } { fitb }
1550 { fitbh } { fitbh }
1551 { fitbv } { fitbv }
1552 { fith } { fith }
1553 { fitv } { fitv }
1554 { fitr } { fitr }
1555 }
1556 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1557 \scan_stop:
1558 \exp_args:Ne \pdf_object_if_exist:nT { \l_pdf_current_structure_destination_tl }
1559 {
1560 \tex_pdfextension:D dest
1561 struct~
1562 \int_use:c
1563 { c__pdf_object_ \exp_args:Ne \tl_to_str:n {\l_pdf_current_structure_destination_tl} _int }~
1564 name {#1}
1565 \str_case:nnF {#2}
1566 {
1567 { xyz } { xyz }
1568 { fit } { fit }
1569 { fitb } { fitb }
1570 { fitbh } { fitbh }
1571 { fitbv } { fitbv }
1572 { fith } { fith }
1573 { fitv } { fitv }
1574 { fitr } { fitr }
1575 }
1576 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1577 \scan_stop:
1578 }
1579 }
1580 \cs_set_protected:Npn __pdf_backend_structure_destination:nnnn #1#2#3#4
1581 {
1582 \tex_pdfextension:D dest
1583 name {#1}
1584 fitr ~
1585 width \dim_eval:n {#2} ~

35

1586 height \dim_eval:n {#3} ~
1587 depth \dim_eval:n {#4} \scan_stop:
1588 \exp_args:Ne \pdf_object_if_exist:nT { \l_pdf_current_structure_destination_tl }
1589 {
1590 \tex_pdfextension:D dest
1591 struct~
1592 \int_use:c
1593 { c__pdf_object_ \exp_args:Ne \tl_to_str:n {\l_pdf_current_structure_destination_tl} _int }~
1594 name {#1}
1595 fitr ~
1596 width \dim_eval:n {#2} ~
1597 height \dim_eval:n {#3} ~
1598 depth \dim_eval:n {#4} \scan_stop:
1599 }
1600 }
1601 \cs_set_protected:Npn __pdfannot_backend_link_begin_structure_goto:nnw #1#2
1602 {
1603 __pdfannot_backend_link_begin:nnnw {#1} { goto~struct~name~{#2}~name } {#2}
1604 }
1605 }
1606 〈/luatex〉

(End of definition for __pdf_backend_structure_destination:nn , __pdf_backend_structure_destination:nnnn ,
and __pdfannot_backend_link_begin_structure_goto:nnw.)

__pdf_backend_indexed_structure_destination:nn
__pdf_backend_indexed_structure_destination:nnnn

This are the indexed variants of the commands to create a destination and a structure
destination. At first xetex/dvipdfmx. The structure destination is an array, so we use
obj for it so that we can reference it:

1607 〈∗xdvipdfmx | dvipdfmx〉
1608 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nn #1#2
1609 {
1610 __pdf_backend:e
1611 {
1612 dest ~ (\exp_not:n {#1})
1613 [
1614 @thispage
1615 \str_case:nnF {#2}
1616 {
1617 { xyz } { /XYZ ~ @xpos ~ @ypos ~ null }
1618 { fit } { /Fit }
1619 { fitb } { /FitB }
1620 { fitbh } { /FitBH }
1621 { fitbv } { /FitBV ~ @xpos }
1622 { fith } { /FitH ~ @ypos }
1623 { fitv } { /FitV ~ @xpos }
1624 { fitr } { /Fit }
1625 }
1626 { /XYZ ~ @xpos ~ @ypos ~ \fp_eval:n { (#2) / 100 } }
1627]
1628 }

We do not test anymore if the structure object exist. The object of the structure des-
tination gets the name @pdf.Sdest.〈destname〉, where 〈destname〉 is the name of the
standard destination so that we can reference it in the GoTo links.

36

1629 __pdf_backend:e
1630 {
1631 obj ~ @pdf.SDest.\exp_not:n{#1}
1632 [
1633 \exp_after:wN \pdf_object_ref_indexed:nn \l_pdf_current_structure_destination_tl
1634 \str_case:nnF {#2}
1635 {
1636 { xyz } { /XYZ ~ @xpos ~ @ypos ~ null }
1637 { fit } { /Fit }
1638 { fitb } { /FitB }
1639 { fitbh } { /FitBH }
1640 { fitbv } { /FitBV ~ @xpos }
1641 { fith } { /FitH ~ @ypos }
1642 { fitv } { /FitV ~ @xpos }
1643 { fitr } { /Fit }
1644 }
1645 { /XYZ ~ @xpos ~ @ypos ~ \fp_eval:n { (#2) / 100 } }
1646]
1647 }
1648 }

The second destination command is for the boxed destination. Here we need to
define an new auxiliary command:

1649 \cs_new_protected:Npn __pdf_backend_indexed_structure_destination_aux:nnnn #1#2#3#4
1650 {
1651 \vbox_to_zero:n
1652 {
1653 __kernel_kern:n {#4}
1654 \hbox:n
1655 {
1656 __pdf_backend:n { obj ~ @pdf_ #2 _llx ~ @xpos }
1657 __pdf_backend:n { obj ~ @pdf_ #2 _lly ~ @ypos }
1658 }
1659 \tex_vss:D
1660 }
1661 __kernel_kern:n {#1}
1662 \vbox_to_zero:n
1663 {
1664 __kernel_kern:n { -#3 }
1665 \hbox:n
1666 {
1667 __pdf_backend:n
1668 {
1669 dest ~ (#2)
1670 [
1671 @thispage
1672 /FitR ~
1673 @pdf_ #2 _llx ~ @pdf_ #2 _lly ~
1674 @xpos ~ @ypos
1675]
1676 }

Here we add the structure destination to the same box
1677 __pdf_backend:e
1678 {

37

1679 obj ~ @pdf.SDest.\exp_not:n{#2}
1680 [
1681 \exp_after:wN \pdf_object_ref_indexed:nn \l_pdf_current_structure_destination_tl
1682 /FitR ~
1683 @pdf_ #2 _llx ~ @pdf_ #2 _lly ~
1684 @xpos ~ @ypos
1685]
1686 }
1687 }
1688 \tex_vss:D
1689 }
1690 __kernel_kern:n { -#1 }
1691 }

And now we redefine the destination command:
1692 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nnnn #1#2#3#4
1693 {
1694 \exp_args:Ne __pdf_backend_indexed_structure_destination_aux:nnnn
1695 { \dim_eval:n {#2} } {#1} {#3} {#4}
1696 }
1697 〈/xdvipdfmx | dvipdfmx〉

Now pdftex. We only redefine for version 1.40 revision 24 or later.
1698 〈∗pdftex〉
1699 \bool_lazy_and:nnT
1700 { \int_compare_p:nNn {\tex_pdftexversion:D } > {139} }
1701 { \int_compare_p:nNn {\tex_pdftexrevision:D } > {23} }
1702 {
1703 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nn #1#2
1704 {
1705 \tex_pdfdest:D
1706 name {#1}
1707 \str_case:nnF {#2}
1708 {
1709 { xyz } { xyz }
1710 { fit } { fit }
1711 { fitb } { fitb }
1712 { fitbh } { fitbh }
1713 { fitbv } { fitbv }
1714 { fith } { fith }
1715 { fitv } { fitv }
1716 { fitr } { fitr }
1717 }
1718 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1719 \scan_stop:
1720 \tex_pdfdest:D
1721 struct~
1722 \exp_after:wN __kernel_pdf_object_id_indexed:nn \l_pdf_current_structure_destination_tl ~
1723 name {#1}
1724 \str_case:nnF {#2}
1725 {
1726 { xyz } { xyz }
1727 { fit } { fit }
1728 { fitb } { fitb }
1729 { fitbh } { fitbh }

38

1730 { fitbv } { fitbv }
1731 { fith } { fith }
1732 { fitv } { fitv }
1733 { fitr } { fitr }
1734 }
1735 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1736 \scan_stop:
1737 }
1738 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nnnn #1#2#3#4
1739 {
1740 \tex_pdfdest:D
1741 name {#1}
1742 fitr ~
1743 width \dim_eval:n {#2} ~
1744 height \dim_eval:n {#3} ~
1745 depth \dim_eval:n {#4} \scan_stop:
1746 \tex_pdfdest:D
1747 struct~
1748 \exp_after:wN __kernel_pdf_object_id_indexed:nn \l_pdf_current_structure_destination_tl ~
1749 name {#1}
1750 fitr ~
1751 width \dim_eval:n {#2} ~
1752 height \dim_eval:n {#3} ~
1753 depth \dim_eval:n {#4} \scan_stop:
1754 }
1755 }
1756 〈/pdftex〉

luatex is quite similar to pdftex. Mostly the test for the version is different
1757 〈∗luatex〉
1758 \int_compare:nNnT {\directlua{tex.print(status.list()["development_id"])} } > {7468}
1759 {
1760 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nn #1#2
1761 {
1762 \tex_pdfextension:D dest
1763 name {#1}
1764 \str_case:nnF {#2}
1765 {
1766 { xyz } { xyz }
1767 { fit } { fit }
1768 { fitb } { fitb }
1769 { fitbh } { fitbh }
1770 { fitbv } { fitbv }
1771 { fith } { fith }
1772 { fitv } { fitv }
1773 { fitr } { fitr }
1774 }
1775 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1776 \scan_stop:
1777 \tex_pdfextension:D dest
1778 struct~
1779 \exp_after:wN __kernel_pdf_object_id_indexed:nn \l_pdf_current_structure_destination_tl ~
1780 name {#1}
1781 \str_case:nnF {#2}
1782 {

39

1783 { xyz } { xyz }
1784 { fit } { fit }
1785 { fitb } { fitb }
1786 { fitbh } { fitbh }
1787 { fitbv } { fitbv }
1788 { fith } { fith }
1789 { fitv } { fitv }
1790 { fitr } { fitr }
1791 }
1792 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1793 \scan_stop:
1794 }
1795 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nnnn #1#2#3#4
1796 {
1797 \tex_pdfextension:D dest
1798 name {#1}
1799 fitr ~
1800 width \dim_eval:n {#2} ~
1801 height \dim_eval:n {#3} ~
1802 depth \dim_eval:n {#4} \scan_stop:
1803 \tex_pdfextension:D dest
1804 struct~
1805 \exp_after:wN __kernel_pdf_object_id_indexed:nn \l_pdf_current_structure_destination_tl~
1806 name {#1}
1807 fitr ~
1808 width \dim_eval:n {#2} ~
1809 height \dim_eval:n {#3} ~
1810 depth \dim_eval:n {#4} \scan_stop:
1811 }
1812 \cs_set_protected:Npn __pdfannot_backend_link_begin_structure_goto:nnw #1#2
1813 {
1814 __pdfannot_backend_link_begin:nnnw {#1} { goto~struct~name~{#2}~name } {#2}
1815 }
1816 }
1817 〈/luatex〉

(End of definition for __pdf_backend_indexed_structure_destination:nn and __pdf_backend_-
indexed_structure_destination:nnnn.)

1.12 Settings for regression tests
When doing pdf based regression tests some meta data in the pdf should have fixed values
to get identical pdf’s. We define here the backend dependent part. The main command
is then in l3pdfmeta

1818 〈∗drivers〉
1819 \cs_new_protected:Npn __pdf_backend_set_regression_data:
1820 {
1821 \sys_gset_rand_seed:n{1000}
1822 \pdfmanagement_add:nnn{Info}{Creator}{(TeX)}
1823 〈/drivers〉
1824 〈∗dvips〉
1825 \AddToHook{begindocument}{\pdfmanagement_add:nnn{Info}{Producer}{(pdfTeX+dvips)}}
1826 __kernel_backend_literal:e{!~<</DocumentUUID~(DocumentUUID)>>~setpagedevice}
1827 __kernel_backend_literal:e{!~<</InstanceUUID~(InstanceUUID)>>~setpagedevice}

40

1828 \pdfmanagement_add:nne{Info}{CreationDate}{(\c_sys_timestamp_str)}
1829 \pdfmanagement_add:nne{Info}{ModDate}{(\c_sys_timestamp_str)}
1830 〈/dvips〉
1831 〈∗dvipdfmx〉
1832 \pdfmanagement_add:nnn{Info}{Producer}{(dvipdfmx)}
1833 __kernel_backend_literal:e
1834 {pdf:trailerid [~
1835 <00112233445566778899aabbccddeeff>~
1836 <00112233445566778899aabbccddeeff>~
1837]}
1838 〈/dvipdfmx〉
1839 〈∗xdvipdfmx〉
1840 \pdfmanagement_add:nnn{Info}{Producer}{(xetex)}
1841 __kernel_backend_literal:e
1842 {pdf:trailerid [~
1843 <00112233445566778899aabbccddeeff>~
1844 <00112233445566778899aabbccddeeff>~
1845]}
1846 〈/xdvipdfmx〉
1847 〈∗pdftex〉
1848 \pdfmanagement_add:nnn{Info}{Producer}{(pdfTeX)}
1849 \tex_pdfsuppressptexinfo:D 7 \scan_stop:
1850 \pdftrailerid{2350CAD05F8A7AF0AA4058486855344F}
1851 〈/pdftex〉
1852 〈∗luatex〉
1853 \pdfmanagement_add:nnn{Info}{Producer}{(LuaTeX)}
1854 \tex_pdfvariable:D suppressoptionalinfo 7\relax
1855 \tex_pdfvariable:D trailerid
1856 {[~
1857 <2350CAD05F8A7AF0AA4058486855344F>~
1858 <2350CAD05F8A7AF0AA4058486855344F>~
1859]}
1860 〈/luatex〉

Embedded files should also have a fix date.
1861 〈∗drivers〉
1862 \pdfdict_put:nne {l_pdffile/Params} {ModDate}{(\c_sys_timestamp_str)}
1863 \AddToDocumentProperties[hyperref]{pdfinstanceid}{uuid:0a57c455-157a-4141-

8c19-6237d832fc80}
1864 \AddToDocumentProperties[hyperref]{pdfproducer}{\c_sys_engine_exec_str-NN.NN.NN}
1865 }
1866 〈/drivers〉

1.13 Uncompressed metadata object stream
The xmp metadata should be written “uncompressed” to pdf. It is not quite clear what
exactly that means. Probably it only means that there should be no /Filter key in the
stream, but packages like pdfx and hyperref try to suppress object compression too, so we
add support for it too. With luatex this is possible by using the uncompressed key word.
With pdftex one can change locally the compresslevel. (x)dvipdfmx does it automatically
and doesn’t need some special command. No solution is known for the dvips route. We
need it only once, so we make it special and probably no public interface is needed. It
writes the __pdfmeta/xmp object which should be declared before.

41

luatex has of now (2025-11-12) a bug: using the uncompressed key disables ob-
ject compression for all following objects. We therefor delay the writing into the
enddocument/end hook after the tagpdf code.

1867 〈∗luatex〉
1868 \cs_new_protected:Npn __pdf_backend_metadata_stream:n #1
1869 {
1870 \AddToHook{enddocument/end}
1871 {
1872 \tex_immediate:D \tex_pdfextension:D obj ~
1873 useobjnum ~ \int_eval:n{__pdf_object_retrieve:n {__pdfmeta/xmp}}~uncompressed~
1874 __pdf_backend_object_write:nn {stream}
1875 {{/Type~/Metadata~/Subtype~/XML}{#1}}
1876 }
1877 }
1878 〈/luatex〉
1879 〈∗pdftex〉
1880 \cs_new_protected:Npn __pdf_backend_metadata_stream:n #1
1881 {
1882 \group_begin:
1883 \tex_pdfcompresslevel:D 0 \scan_stop:
1884 \tex_immediate:D \tex_pdfobj:D useobjnum ~ \int_eval:n{__pdf_object_retrieve:n
1885 {__pdfmeta/xmp}}~
1886 __pdf_backend_object_write:nn {stream} {{/Type~/Metadata~/Subtype~/XML}{#1}}
1887 \group_end:
1888 }
1889 〈/pdftex〉
1890 〈∗xdvipdfmx | dvipdfmx | dvips | dvisvgm〉
1891 \cs_new_protected:Npn __pdf_backend_metadata_stream:n #1
1892 {
1893 \pdf_object_write:nnn{__pdfmeta/xmp} {stream}{{/Type~/Metadata~/Subtype~/XML}{#1}}
1894 }
1895 〈/xdvipdfmx | dvipdfmx | dvips | dvisvgm〉

1.14 Suppressing deprecated PDF features
/ProcSet, /CharSet and the /Info dictionary are deprecated in PDF 2.0. For the pdf/A-
4 standard they must be suppressed. Not every engine is able to do this, but for pdfTeX
and luatex we define suitable backend command. /ProcSet is suppressed automatically
for pdf version 2.0 starting with in texlive 2023.

__pdf_backend_omit_charset:n The option to omit /Charset exists already for quite some time for the two engines.
1896 〈∗xdvipdfmx | dvipdfmx | dvips | dvisvgm〉
1897 \cs_new_protected:Npn __pdf_backend_omit_charset:n #1 {} %#1 number
1898 〈/xdvipdfmx | dvipdfmx | dvips | dvisvgm〉
1899 〈∗pdftex〉
1900 \cs_new_protected:Npn __pdf_backend_omit_charset:n #1 %#1 number
1901 {
1902 \tex_pdfomitcharset:D = #1 \scan_stop:
1903 }
1904 〈/pdftex〉
1905 〈∗luatex〉
1906 \cs_new_protected:Npn __pdf_backend_omit_charset:n #1 %#1 number
1907 {

42

1908 \tex_pdfvariable:D omitcharset = #1 \scan_stop:
1909 }
1910 〈/luatex〉

(End of definition for __pdf_backend_omit_charset:n.)

__pdf_backend_omit_info:n The option to suppress the info dictionary will be available in texlive 2023.
1911 〈∗xdvipdfmx | dvipdfmx | dvips | dvisvgm〉
1912 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 {} %#1 number
1913 〈/xdvipdfmx | dvipdfmx | dvips | dvisvgm〉
1914 〈∗pdftex〉
1915 \bool_lazy_and:nnTF
1916 { \int_compare_p:nNn {\tex_pdftexversion:D } > {139} }
1917 { \int_compare_p:nNn {\tex_pdftexrevision:D } > {24} }
1918 {
1919 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 %#1 number
1920 {
1921 \pdfomitinfodict = #1 \scan_stop:
1922 }
1923 }
1924 {
1925 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 {}%#1 number
1926

1927 }
1928 〈/pdftex〉
1929 〈∗luatex〉
1930 \int_compare:nNnTF {\directlua{tex.print(status.list()["development_id"])} } > {7560}
1931 {
1932 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 %#1 number
1933 {
1934 \tex_pdfvariable:D omitinfodict = #1 \scan_stop:
1935 }
1936 }
1937 {
1938 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 {} %#1 number
1939 }
1940 〈/luatex〉

(End of definition for __pdf_backend_omit_info:n.)
With luatex it is for some standards also necessary to suppress the CidSet entry in

the fonts (with xetex there seem to be no problem.

__pdf_backend_omit_cidset:n The option to omit /Charset exists already for quite some time for the two engines.
1941 〈∗xdvipdfmx | dvipdfmx | dvips | dvisvgm | pdftex〉
1942 \cs_new_protected:Npn __pdf_backend_omit_cidset:n #1 {} %#1 number
1943 〈/xdvipdfmx | dvipdfmx | dvips | dvisvgm | pdftex〉
1944 〈∗luatex〉
1945 \cs_new_protected:Npn __pdf_backend_omit_cidset:n #1 %#1 number
1946 {
1947 \tex_pdfvariable:D omitcidset = #1 \scan_stop:
1948 }
1949 〈/luatex〉

(End of definition for __pdf_backend_omit_cidset:n.)

43

1.15 lua code for lualatex
1950 〈∗lua〉
1951 ltx= ltx or {}
1952 ltx.__pdf = ltx.__pdf or {}
1953 ltx.__pdf.Page = ltx.__pdf.Page or {}
1954 ltx.__pdf.Page.dflt = ltx.__pdf.Page.dflt or {}
1955 ltx.__pdf.Page.Resources = ltx.__pdf.Resources or {}
1956 ltx.__pdf.Page.Resources.Properties = ltx.__pdf.Page.Resources.Properties or {}
1957 ltx.__pdf.Page.Resources.List={"ExtGState","ColorSpace","Pattern","Shading"}
1958 ltx.__pdf.object = ltx.__pdf.object or {}
1959

1960 ltx.pdf= ltx.pdf or {} -- for "public" functions
1961

1962 local __pdf = ltx.__pdf
1963 local pdf = pdf
1964

1965 local function __pdf_backend_Page_gput (name,value)
1966 __pdf.Page.dflt[name]=value
1967 end
1968

1969 local function __pdf_backend_Page_gremove (name)
1970 __pdf.Page.dflt[name]=nil
1971 end
1972

1973 local function __pdf_backend_Page_gclear ()
1974 __pdf.Page.dflt={}
1975 end
1976

1977 local function __pdf_backend_ThisPage_gput (page,name,value)
1978 __pdf.Page[page] = __pdf.Page[page] or {}
1979 __pdf.Page[page][name]=value
1980 end
1981

1982 local function __pdf_backend_ThisPage_gpush (page)
1983 local token=""
1984 local t = {}
1985 local tkeys= {}
1986 for name,value in pairs(__pdf.Page.dflt) do
1987 t[name]=value
1988 end
1989 if __pdf.Page[page] then
1990 for name,value in pairs(__pdf.Page[page]) do
1991 t[name] = value
1992 end
1993 end
1994 -- sort the table to get reliable test files.
1995 for name,value in pairs(t) do
1996 table.insert(tkeys,name)
1997 end
1998 table.sort(tkeys)
1999 for _,name in ipairs(tkeys) do
2000 token = token .. "/"..name.." "..t[name]
2001 end

44

2002 return token
2003 end
2004

2005 function ltx.__pdf.backend_ThisPage_gput (page,name,value) -- tex.count["g_shipout_readonly_int"]
2006 __pdf_backend_ThisPage_gput (page,name,value)
2007 end
2008

2009 function ltx.__pdf.backend_ThisPage_gpush (page)
2010 pdf.setpageattributes(__pdf_backend_ThisPage_gpush (page))
2011 end
2012

2013 function ltx.__pdf.backend_Page_gput (name,value)
2014 __pdf_backend_Page_gput (name,value)
2015 end
2016

2017 function ltx.__pdf.backend_Page_gremove (name)
2018 __pdf_backend_Page_gremove (name)
2019 end
2020

2021 function ltx.__pdf.backend_Page_gclear ()
2022 __pdf_backend_Page_gclear ()
2023 end
2024

2025

2026 local Properties = ltx.__pdf.Page.Resources.Properties
2027 local ResourceList= ltx.__pdf.Page.Resources.List
2028 local function __pdf_backend_PageResources_gpush (page)
2029 local token=""
2030 if Properties[page] then
2031 -- we sort the table, so that the pdf test works
2032 local t = {}
2033 for name,value in pairs (Properties[page]) do
2034 table.insert (t,name)
2035 end
2036 table.sort (t)
2037 for _,name in ipairs(t) do
2038 token = token .. "/"..name.." ".. Properties[page][name]
2039 end
2040 token = "/Properties <<"..token..">>"
2041 end
2042 for i,name in ipairs(ResourceList) do
2043 if ltx.__pdf.Page.Resources[name] then
2044 token = token .. "/"..name.." "..ltx.pdf.object_ref("__pdf/Page/Resources/"..name)
2045 end
2046 end
2047 return token
2048 end
2049

2050 -- the function is public, as I probably need it in tagpdf too ...
2051 function ltx.pdf.Page_Resources_Properties_gput (page,name,value) -- tex.count["g_shipout_readonly_int"]
2052 Properties[page] = Properties[page] or {}
2053 Properties[page][name]=value
2054 pdf.setpageresources(__pdf_backend_PageResources_gpush (page))
2055 end

45

2056

2057 function ltx.pdf.Page_Resources_gpush(page)
2058 pdf.setpageresources(__pdf_backend_PageResources_gpush (page))
2059 end
2060

2061 function ltx.pdf.object_ref (objname)
2062 if ltx.__pdf.object[objname] then
2063 local ref= ltx.__pdf.object[objname]
2064 return ref
2065 else
2066 return "false"
2067 end
2068 end
2069 〈/lua〉

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
\AddToDocumentProperties 1863, 1864
\AddToHook 1825, 1870
\AssignSocketPlug 937

B
bool commands:

\bool_if:NTF 676, 700, 756, 786
\bool_lazy_and:nnTF . 1468, 1699, 1915
\bool_new:N 516
\bool_set_true:N 948, 1030, 1123, 1224

box commands:
\box_dp:N . 961, 1042, 1134, 1237, 1251
\box_ht:N . 958, 1039, 1131, 1234, 1246
\box_new:N 85, 86, 1120
\box_scale:Nnn 1255
\box_set_dp:Nn . 1135, 1201, 1298, 1322
\box_set_ht:Nn . 1136, 1200, 1299, 1321
\box_set_wd:Nn . 1137, 1199, 1300, 1320
\box_use:N 1304
\box_use_drop:N 1148, 1202, 1279, 1323
\box_wd:N . 955, 1036, 1128, 1231, 1241

C
clist commands:

\clist_const:Nn 414
\clist_map_function:NN 861
\clist_map_inline:Nn 423, 457, 473, 656

cs commands:
\cs_generate_variant:Nn

. 28, 31, 32, 35, 36, 76, 77, 411

\cs_gset_eq:NN
638, 1348, 1349, 1350, 1354, 1355, 1356

\cs_if_exist:NTF 426, 920
\cs_new:Npn 71, 97, 103,

242, 837, 1014, 1096, 1185, 1209, 1325
\cs_new_protected:Npn

39, 43, 53, 65, 147, 154, 169, 175,
181, 188, 195, 204, 224, 247, 257,
271, 283, 300, 311, 318, 325, 334,
343, 350, 357, 364, 373, 382, 390,
393, 399, 404, 407, 438, 449, 455,
481, 485, 497, 500, 501, 505, 508,
509, 513, 527, 549, 570, 654, 746,
846, 870, 877, 884, 893, 897, 900,
903, 915, 940, 1007, 1022, 1087,
1110, 1190, 1207, 1208, 1215, 1309,
1346, 1352, 1411, 1649, 1819, 1868,
1880, 1891, 1897, 1900, 1906, 1912,
1919, 1925, 1932, 1938, 1942, 1945

\cs_new_protected:Npx 163
\cs_set_eq:NN

. 524, 525, 557, 558, 646, 733, 739,
823, 829, 1360, 1361, 1362, 1363, 1364

\cs_set_protected:Npn
. 520, 533, 537, 541, 545,
555, 560, 562, 564, 566, 568, 581,
600, 619, 625, 631, 636, 642, 648,
671, 695, 719, 723, 728, 735, 741,
749, 779, 810, 814, 819, 825, 832,
922, 926, 1367, 1457, 1462, 1472,
1511, 1532, 1541, 1580, 1601, 1608,
1692, 1703, 1738, 1760, 1795, 1812

46

D
dim commands:

\dim_eval:n 1460, 1516,
1517, 1518, 1527, 1528, 1529, 1585,
1586, 1587, 1596, 1597, 1598, 1695,
1743, 1744, 1745, 1751, 1752, 1753,
1800, 1801, 1802, 1808, 1809, 1810

\dim_to_decimal_in_sp:n
. 1241, 1246, 1251

\c_zero_dim
. . 1135, 1136, 1137, 1298, 1299, 1300

\directlua 94, 1539, 1758, 1930

E
exp commands:

\exp_after:wN
. . 1633, 1681, 1722, 1748, 1779, 1805

\exp_args:Ne . 684, 708, 1388, 1394,
1439, 1445, 1459, 1489, 1494, 1519,
1524, 1558, 1563, 1588, 1593, 1694

\exp_args:NNe 848
\exp_not:n 605, 699,

783, 1371, 1392, 1443, 1612, 1631, 1679

F
\footins . 935
fp commands:

\fp_eval:n
1385, 1406, 1487, 1507, 1556, 1576,

1626, 1645, 1718, 1735, 1775, 1792

G
group commands:

\group_begin: 1882
\group_end: 1887

H
hbox commands:

\hbox:n 1416, 1427, 1654, 1665
\hbox_gset:Nn 1121
\hbox_set:Nn

. . . 946, 1028, 1192, 1222, 1256, 1311
hook commands:

\hook_gput_code:nnn . . . 139, 476, 1301
\hook_gput_next_code:nn 1138
\hook_gset_rule:nnnn 470, 471

I
int commands:

\int_compare:nNnTF
. 969, 1050, 1539, 1758, 1930

\int_compare_p:nNn
. . 1469, 1470, 1700, 1701, 1916, 1917

\int_const:Nn . . 1002, 1082, 1117, 1218
\int_eval:n 1873, 1884

\int_gincr:N 207, 583, 602,
673, 697, 751, 755, 781, 785, 1116, 1217

\int_if_exist:NTF 1335
\int_new:N 89, 90, 91
\int_use:N 208, 211,

586, 594, 605, 613, 675, 680, 689,
699, 704, 713, 753, 760, 764, 767,
775, 783, 790, 794, 797, 805, 1010,
1016, 1089, 1097, 1187, 1265, 1292,
1316, 1327, 1493, 1523, 1562, 1592

K
kernel internal commands:

__kernel_backend_literal:n
. . 31, 80, 584, 588, 603, 607, 621,
633, 650, 660, 1826, 1827, 1833, 1841

__kernel_backend_literal_page:n
. 28, 674, 698,
721, 730, 743, 752, 782, 812, 821, 834

__kernel_backend_postscript:n .
. 35, 1258, 1280, 1286, 1313

__kernel_backend_shipout_-
literal:n 39, 39, 529, 644

__kernel_backend_shipout_-
literal_page:n . . . 53, 53, 737, 827

__kernel_backend_shipout_-
literal_pdf:n 43, 43

__kernel_kern:n 1415, 1423,
1426, 1455, 1653, 1661, 1664, 1690

__kernel_pdf_name_from_unicode_-
e:n 97, 103

__kernel_pdf_object_id_indexed:nn
. 1722, 1748, 1779, 1805

__kernel_pdfdict_name:n 226, 227,
229, 460, 488, 658, 840, 851, 856,
949, 970, 981, 986, 991, 996, 1031,
1051, 1061, 1066, 1071, 1076, 1225

\g__kernel_pdfmanagement_end_-
run_code_tl 112, 119, 126

\g__kernel_pdfmanagement_-
thispage_shipout_code_tl 135, 141

L
latelua commands:

\latelua: 201, 280, 331, 370
lua commands:

\lua_load_module:n 933

M
mode commands:

\mode_leave_vertical: 1140, 1303

N
\NewSocketPlug 934

47

P
pdf commands:

\pdf_activate_indexed_structure_-
destination: 1345, 1352

\pdf_activate_structure_destination:
. 1345, 1346

\l_pdf_current_structure_-
destination_tl 1342,
1388, 1394, 1439, 1445, 1489, 1494,
1519, 1524, 1558, 1563, 1588, 1593,
1633, 1681, 1722, 1748, 1779, 1805

\pdf_object_if_exist:nTF
. . 1388, 1439, 1489, 1519, 1558, 1588

\pdf_object_new:n 425, 475
\pdf_object_ref:n

. 432, 493, 535, 595, 663,
681, 690, 761, 776, 842, 983, 988,
993, 998, 1063, 1068, 1073, 1078,
1154, 1161, 1168, 1176, 1394, 1445

\pdf_object_ref_indexed:nn 1633, 1681
\pdf_object_ref_last: . . 873, 880, 887
\pdf_object_unnamed_write:nn . . .

. 627, 725, 816, 872, 879, 886
\pdf_object_write 490
\pdf_object_write:nnn . 462, 479, 1893

pdf internal commands:
__pdf_backend:n

32, 171, 483, 491, 887, 1141, 1149,
1150, 1157, 1164, 1171, 1179, 1194,
1369, 1390, 1418, 1419, 1429, 1441,
1610, 1629, 1656, 1657, 1667, 1677

__pdf_backend_bdc:nn
. 13, 515, 520, 524, 525,
555, 557, 558, 636, 638, 639, 733, 823

__pdf_backend_bdc_contobj:nn . .
. 524, 557, 625, 638, 723, 814

__pdf_backend_bdc_contstream:nn
. . . . 525, 558, 631, 728, 733, 819, 823

__pdf_backend_bdc_shipout:nn . .
. 527, 646, 739, 829

__pdf_backend_bdc_shipout_-
contstream:nn
. 642, 646, 735, 739, 825, 829

__pdf_backend_bdcobject:n
. 13, 515,
537, 564, 600, 628, 695, 726, 779, 817

__pdf_backend_bdcobject:nn
. 13, 515, 533, 562, 581, 671, 749

__pdf_backend_bmc:n
. 13, 515, 545, 568, 619, 719, 810

__pdf_backend_catalog_gput:nn . . 20
__pdf_backend_destination:nn . .

. 1348, 1354, 1360, 1363

__pdf_backend_destination:nnnn
. 1349, 1355, 1361, 1364

__pdf_backend_emc:
. 13, 515, 541, 566, 648, 741, 832

__pdf_backend_indexed_structure_-
destination:nn
. . 1354, 1363, 1607, 1608, 1703, 1760

__pdf_backend_indexed_structure_-
destination:nnnn
. . 1355, 1364, 1607, 1692, 1738, 1795

__pdf_backend_indexed_structure_-
destination_aux:nnnn . 1649, 1694

__pdf_backend_luastring:n
158, 242, 251, 263, 264, 275, 290, 291

__pdf_backend_metadata_stream:n
. 1868, 1880, 1891

\g__pdf_backend_name_int
. 88, 583, 586, 594,
602, 605, 613, 673, 675, 680, 689,
697, 699, 704, 713, 751, 753, 781, 783

__pdf_backend_Names_gpush:nn . .
. 870, 877, 884, 893, 897

__pdf_backend_NamesEmbeddedFiles_-
add:nn 899, 900, 903, 915

\g__pdf_backend_object_int
. 1116, 1119, 1217, 1220, 1265

__pdf_backend_object_last:
. 539, 614, 705, 714, 791, 806

__pdf_backend_object_write:nn .
. 1874, 1886

__pdf_backend_omit_charset:n . .
. 1896, 1897, 1900, 1906

__pdf_backend_omit_cidset:n . . .
. 1941, 1942, 1945

__pdf_backend_omit_info:n
. . 1911, 1912, 1919, 1925, 1932, 1938

__pdf_backend_Page_gput:nn
. 6, 178, 188, 257, 318, 357, 393

__pdf_backend_Page_gremove:n . .
. 6, 178, 195, 271, 325, 364, 399

\g__pdf_backend_page_int 88
__pdf_backend_Page_primitive:n

. 6, 178, 181, 234, 247,
311, 336, 345, 350, 375, 384, 390, 411

__pdf_backend_PageResources:n .
. 481, 500, 508

\c__pdf_backend_PageResources_-
clist . . 413, 423, 457, 473, 656, 862

__pdf_backend_PageResources_-
gpush:n
. 13, 515, 549, 570, 654, 746, 846

__pdf_backend_PageResources_-
gpush_aux:n 837, 863

48

__pdf_backend_PageResources_-
gput:nnn 422, 438, 449, 485, 501, 509

__pdf_backend_PageResources_-
obj_gpush: . 422, 455, 497, 505, 513

__pdf_backend_Pages_primitive:n
. 146, 147, 154, 163, 169, 175

__pdf_backend_pdfmark:n
. 36, 522, 535, 539, 543, 547, 905

__pdf_backend_record_abspage:n
. 65, 76, 208, 764, 794

__pdf_backend_ref_abspage:n . . .
. 71, 77, 211, 767, 797

\g__pdf_backend_resourceid_int .
. 88, 207, 208, 211, 755, 760,
764, 767, 775, 785, 790, 794, 797, 805

__pdf_backend_set_regression_-
data: . 1819

__pdf_backend_shipout_bdc:nn . .
. 13, 515, 560

__pdf_backend_structure_-
destination:nn
. . 1348, 1360, 1366, 1367, 1472, 1541

__pdf_backend_structure_-
destination:nnnn
. . 1349, 1361, 1366, 1457, 1511, 1580

__pdf_backend_structure_-
destination_aux:nnnn . 1411, 1459

__pdf_backend_ThisPage_gpush:n
. 6, 178, 224, 300, 343, 382, 407

__pdf_backend_ThisPage_gput:nn
. 6, 178, 204, 283, 334, 373, 404

\g__pdf_backend_thispage_-
shipout_tl 6

\l__pdf_backend_tmpa_box
. . . . 82, 946, 955, 958, 961, 1001,
1028, 1036, 1039, 1042, 1081, 1192,
1199, 1200, 1201, 1202, 1222, 1231,
1234, 1237, 1241, 1246, 1251, 1255,
1279, 1311, 1320, 1321, 1322, 1323

\l__pdf_backend_tmpb_box
. . . . 86, 1256, 1298, 1299, 1300, 1304

\l__pdf_backend_xform_bool
. 516, 676,
700, 756, 786, 948, 1030, 1123, 1224

__pdf_backend_xform_if_exist:n
. 1333, 1339

__pdf_backend_xform_new:nnnn . .
. . . . 939, 940, 1022, 1110, 1207, 1215

__pdf_backend_xform_ref:n
. 939, 1014,
1096, 1143, 1185, 1196, 1209, 1325

\l__pdf_backend_xform_tmpdp_tl .
. 1213, 1249, 1263, 1270

\l__pdf_backend_xform_tmpht_tl .
. 1214, 1244, 1268

\l__pdf_backend_xform_tmpwd_tl .
. 1212, 1239, 1269

__pdf_backend_xform_use:n
. . . 939, 1007, 1087, 1190, 1208, 1309

__pdf_object_retrieve:n . 1873, 1884
\g__pdf_tmpa_prop . . 82, 226, 231, 236
\l__pdf_tmpa_tl

. 82, 209, 213, 215, 218, 765,
769, 771, 774, 795, 799, 801, 804, 807

pdfannot internal commands:
__pdfannot_backend_link_begin:n

. 1464
__pdfannot_backend_link_-

begin:nnnw 1534, 1603, 1814
__pdfannot_backend_link_begin_-

goto:nnw 1350, 1356, 1362
__pdfannot_backend_link_begin_-

structure_goto:nnw 1350, 1356,
1362, 1366, 1462, 1532, 1601, 1812

__pdfannot_backend_link_off: . . 922
__pdfannot_backend_link_on: . . . 926

pdfdict commands:
\pdfdict_gput:nnn

. 190, 218, 320, 359, 395, 440, 451,
503, 511, 678, 702, 758, 773, 788, 803

\pdfdict_gremove:nn 197, 327, 366, 401
\pdfdict_if_exist:nTF . . 213, 769, 799
\pdfdict_item:nn 236, 842, 857
\pdfdict_new:n 215, 771, 801
\pdfdict_put:nnn 1862
\pdfdict_show:n 807
\pdfdict_use:n 346, 385, 464, 976, 1057

\pdfextension 935
\pdfliteral . 2
pdfmanagement commands:

\pdfmanagement_add:nnn 1822, 1825,
1828, 1829, 1832, 1840, 1848, 1853

\pdfnames . 20
\pdfomitinfodict 1921
\pdfpageref . 3
\pdfrunninglinkoff 920, 924
\pdfrunninglinkon 928
\pdftrailerid 1850
pdfxform commands:

\pdfxform_dp:n 1146, 1201, 1322
\pdfxform_ht:n 1145, 1200, 1321
\pdfxform_if_exist:n 1339
\pdfxform_wd:n 1144, 1199, 1320

prg commands:
\prg_new_conditional:Npnn 1333
\prg_new_eq_conditional:NNn . . . 1339
\prg_return_false: 1337

49

\prg_return_true: 1336
prop commands:

\prop_count:N 970, 1051
\prop_gclear:N 949, 1031, 1225
\prop_gput:Nnn 231, 488
\prop_gset_eq:NN 226
\prop_if_empty:NTF

. 459, 658, 839, 980,
985, 990, 995, 1060, 1065, 1070, 1075

\prop_if_exist:NTF 227, 850
\prop_map_function:NN 236, 855
\prop_map_inline:Nn 229
\prop_new:N 83

property commands:
\property_record:nn 68
\property_ref:nn 73

\ProvidesExplFile 1

R
\relax . 132, 1854

S
scan commands:

\scan_stop: 1011,
1093, 1488, 1508, 1518, 1529, 1557,
1577, 1587, 1598, 1719, 1736, 1745,
1753, 1776, 1793, 1802, 1810, 1849,
1883, 1902, 1908, 1921, 1934, 1947

\setbox . 935
\special . 2
str commands:

\str_case:nnTF
1374, 1395, 1476, 1496, 1545, 1565,

1615, 1634, 1707, 1724, 1764, 1781
\str_convert_pdfname:n 99, 489
\str_if_eq:nnTF 1273, 1284

sys commands:
\c_sys_engine_exec_str 1864
\sys_gset_rand_seed:n 1821
\c_sys_timestamp_str 1828, 1829, 1862

T
TEX and LATEX 2ε commands:

\@bsphack . 67
\@esphack . 69
\@kernel@after@enddocument@afterlastpage

. 109, 110
\@kernel@after@shipout@background

. 130, 133
\@kernel@after@shipout@lastpage

. 116, 117, 123, 124
\@kernel@before@shipout@background

. 132
\g@addto@macro 132, 133

\special . 2
tex commands:

\tex_directlua:D
. . . . 156, 259, 273, 426, 428, 441, 442

\tex_global:D 149, 183, 848
\tex_immediate:D 963, 1044, 1872, 1884
\tex_latelua:D . 249, 285, 302, 684, 708
\tex_luaescapestring:D 244
\tex_pdfcompresslevel:D 1883
\tex_pdfdest:D 1474, 1491,

1513, 1521, 1705, 1720, 1740, 1746
\tex_pdfextension:D

. . . 46, 56, 880, 1543, 1560, 1582,
1590, 1762, 1777, 1797, 1803, 1872

\tex_pdflastxform:D 1004, 1084
\tex_pdfliteral:D 49, 59
\tex_pdfnames:D 873
\tex_pdfobj:D 1884
\tex_pdfomitcharset:D 1902
\tex_pdfpageattr:D 183
\tex_pdfpageresources:D 848
\tex_pdfpagesattr:D 149
\tex_pdfrefxform:D 1009, 1089
\tex_pdfsuppressptexinfo:D . . . 1849
\tex_pdftexrevision:D 1470, 1701, 1917
\tex_pdftexversion:D 1469, 1700, 1916
\tex_pdfvariable:D

. 1854, 1855, 1908, 1934, 1947
\tex_pdfxform:D 963, 1044
\tex_special:D 40, 165, 313, 352
\tex_the:D

. . 955, 958, 961, 1036, 1039, 1042,
1128, 1131, 1134, 1231, 1234, 1237

\tex_unexpanded:D 244
\tex_vss:D 1421, 1453, 1659, 1688

text commands:
\text_expand:n 99, 105

tl commands:
\c_space_tl 586, 594, 605, 613, 675,

699, 753, 783, 1144, 1145, 1146, 1265
\tl_const:Nn

. . 953, 956, 959, 1034, 1037, 1040,
1126, 1129, 1132, 1229, 1232, 1235

\tl_gput_right:Nn 110, 117, 124
\tl_if_exist:NTF 130
\tl_new:N . . 84, 1212, 1213, 1214, 1343
\tl_set:Nn

. 209, 765, 795, 1239, 1244, 1249
\tl_to_str:n

. 954, 957, 960, 1003, 1010,
1016, 1035, 1038, 1041, 1083, 1091,
1097, 1118, 1127, 1130, 1133, 1187,
1219, 1230, 1233, 1236, 1292, 1316,
1327, 1335, 1494, 1524, 1563, 1593

50

\tl_use:N 1263, 1268, 1269, 1270

U
\unvbox . 935

V
\vbox . 935
vbox commands:

\vbox_to_zero:n 1413, 1424, 1651, 1662

51

	1 l3backend-testphase Implementation
	1.1 Variants
	1.2 Support for delayed literal and special
	1.3 Crossreferences
	1.4 luacode
	1.5 Converting unicode strings to a pdfname
	1.6 Hooks
	1.6.1 Add the "end run" hooks
	1.6.2 Add the "shipout" hooks

	1.7 The /Pages dictionary (pdfpagesattr)
	1.8 "Page" and "ThisPage" attributes (pdfpageattr)
	1.9 "Page/Resources": ExtGState, ColorSpace, Shading, Pattern
	1.9.1 Page resources /Properties + BDC operators

	1.10 "Catalog" & subdirectories (pdfcatalog)
	1.10.1 Special case: the /Names/EmbeddedFiles dictionary
	1.10.2 Additional annotation commands
	1.10.3 Split links
	1.10.4 Form XObject / backend

	1.11 Structure Destinations
	1.12 Settings for regression tests
	1.13 Uncompressed metadata object stream
	1.14 Suppressing deprecated PDF features
	1.15 lua code for lualatex

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V

