The 13backend-testphase package
Additional backend PDF features
IXTEX PDF management bundle

The BTEX Project*
Version 0.96y, released 2026-01-23

1 I3backend-testphase Implementation

1 (drivers)\ProvidesExplFile

> (xdvipdfmx)

5 {13backend-testphase-dvipdfmx.def}{2026-01-23}{0.96y}

+ {LaTeX~PDF~management~bundle~backend~support: dvipdfmx}

s (/dvipdfmx)

o (*dvips)

7 {13backend-testphase-dvips.def}{2026-01-23}{0.96y}
{LaTeX~PDF~management~bundle~backend~support: dvips}

o (/dvips)

10 (xdvisvgm)

11 {13backend-testphase-dvisvgm.def}{2026-01-23}{0.96y}

12 {LaTeX~PDF~management~bundle~backend~support: dvisvgm}

13 (/dvisvgm)

14 (*Iuatex)

15 {13backend-testphase-luatex.def}{2026-01-23}{0.96y}

16 {LaTeX~PDF~management~bundle~backend~support: PDF output (LuaTeX)}

17 (/Iuatex)

15 (xpdftex)

1o {13backend-testphase-pdftex.def}{2026-01-23}{0.96y}

20 {LaTeX~PDF~management~bundle~backend~support: PDF output (pdfTeX)3}

o1 (/pdftex)

22 (#xdvipdfmx)

23 {13backend-testphase-xetex.def}{2026-01-23}{0.96y}

22 {LaTeX~PDF~management~bundle~backend~support: XeTeX}

2 (/xdvipdfmx)

1.1 Variants

We need to generate temporarily a few e-types variants of kernel backend commands.
These can be removed once the kernel provides them.

2 (@@=pdf)

o7 (*luatex | pdftex)

s \cs_generate_variant:Nn __kernel_backend_literal_page:n { e }

*E-mail: latex-team@Ilatex-project.org

mailto:latex-team@latex-project.org

o (/luatex | pdftex)

0 (xdvipdfmx | xdvipdfmx)

51 \cs_generate_variant:Nn __kernel_backend_literal:n { e }

»> \cs_generate_variant:Nn __pdf_backend:n { e }

33 (/dvipdfmx | xdvipdfmx)

34 (xdvips)

55 \cs_generate_variant:Nn __kernel_backend_postscript:n { e }
s \cs_generate_variant:Nn __pdf_backend_pdfmark:n { e }

7 (/dvips)

N}

1.2 Support for delayed literal and special

Starting with TeXlive 2023 the engines support a shipout keyword for \pdfliteral and
\special. When used the argument is not expanded when the command is used but
only when the page is shipped out. This allows for example the tagging code to delay
the page-wise numbering of MC-chunks until the page is actually built. For now we test
the engine support. The boolean is setup in pdfmanagement-testphase.dtx.

3 (xdrivers)

The following commands provide the needed kernel backend support. This are basi-
cally copies of similar commands of 13backend-basics.

_kernel backend shipout literal:e The one shared function for all backends is access to the basic \special primitive.
50 \cs_new_protected:Npn __kernel_backend_shipout_literal:e #1
40 { \tex_special:D~shipout { #1} }
a1 (/drivers)

(End of definition for __kernel_backend_shipout_literal:e.)

a2 (xluatex | pdftex)

_ kernel backend shipout literal pdf:e This is equivalent to \special{pdf:} but the engine can track it. Without the direct
keyword everything is kept in sync: the transformation matrix is set to the current point
automatically. Note that this is still inside the text (BT ..ET block).

+s \cs_new_protected:Npn __kernel_backend_shipout_literal_pdf:e #1
44 {
s (xluatex)
46 \tex_pdfextension:D ~ literal ~ shipout ~
47 (/luatex)
s (xpdftex)
49 \tex_pdfliteral:D ~ shipout ~
so {/pdftex)
51 { #1 }
52 }
(End of definition for __kernel_backend_shipout_literal_pdf:e.)
\ kernel backend shipout literal page:e Page literals are pretty simple.
53 \cs_new_protected:Npn __kernel_backend_shipout_literal_page:e #1

54 {

55 (xluatex)

56 \tex_pdfextension:D ~ literal ~ shipout ~
57 (/Iuatex)

s (xpdftex)

59 \tex_pdfliteral:D ~ shipout ~

\g__pdf_tmpa_prop
\1__pdf_tmpa_tl
\1__pdf_backend_tmpa_box

\g_ pdf backend resourceid int
\g__pdf_backend_name_int
\g__pdf_backend_page_int

60 (/pdftex)

61 page { #1 }
62 }

s (/luatex | pdftex)

(End of definition for __kernel_backend_shipout_literal_page:e.)

1.3 Crossreferences

Commands to get a reference for the absolute page counter.

o1 (xdrivers)

o5 \cs_new_protected:Npn __pdf_backend_record_abspage:n #1

66 {

67 \@bsphack

68 \property_record:nn{#1}{abspage}

69 \@esphack

70 }

71 \cs_new:Npn __pdf_backend_ref_abspage:n #1
72 {

73 \property_ref :nn{#1}{abspage}

w ¥

76 \cs_generate_variant:Nn __pdf_backend_record_abspage:n {e}
77 \cs_generate_variant:Nn __pdf_backend_ref_abspage:n {e}
s (/drivers)

~

avoid that destinations names are optimized with xelatex/dvipdfmx see https://tug.org/piper-
mail/dvipdfmx/2019-May /000002.html

70 (*dvipdfmx | xdvipdfmx)
80 __kernel_backend_literal:n { dvipdfmx:config~C~ 0x0010 }
s (/dvipdfmx | xdvipdfmx)

Some scratch variables

s (xdrivers)

s3 \prop_new:N \g__pdf_tmpa_prop

s \tl_new:N \1__pdf_tmpa_tl

e \box_new:N \1__pdf_backend_tmpa_box
s \box_new:N \1__pdf_backend_tmpb_box
s7 (/drivers)

(End of definition for \g__pdf_tmpa_prop, \1__pdf_tmpa_tl, and \1__pdf_backend_tmpa_box.)

a counter to create labels for the resources, a counter to number properties in bdc marks,
a counter for the \pdfpageref implementation.

s (xdrivers)

s \int_new:N \g__pdf_backend_resourceid_int
o0 \int_new:N \g__pdf_backend_name_int

oo \int_new:N \g__pdf_backend_page_int

> (/drivers)

(End of definition for \g__pdf_backend_resourceid_int, \g__pdf_backend_name_int, and \g__pdf_-
backend_page_int.)

1.4 luacode

Load the lua code.
o3 (xluatex)
04 \directlua { require("l3backend-testphase.lua") }
o (/luatex)

1.5 Converting unicode strings to a pdfname

dvips needs a special function here, so we add this as backend function.
o (*pdftex | luatex | dvipdfmx | xdvipdfmx | dvisvgm)
o7 \cs_new:Npn __kernel_pdf_name_from_unicode_e:n #1
98 {
99 / \str_convert_pdfname:e { \text_expand:n { #1 } }
100 3
w1 (/pdftex | luatex | dvipdfmx | xdvipdfmx | dvisvgm)
102 (*dvips)
103 \cs_new:Npn __kernel_pdf_name_from_unicode_e:n #1

104 {

105 ~ (\text_expand:n { #1 }) ~ cvn
106 }

107 </dVipS>

1.6 Hooks

1.6.1 Add the “end run” hooks

Here we add the end run hook to suitable end hooks.

1ws (xpdftex | luatex)

109 % put in \@kernel@after@enddocument@afterlastpage

110 \tl_gput_right:Nn \@kernel®@after@enddocument@afterlastpage
111 {

112 \g__kernel_pdfmanagement_end_run_code_t1l

113 }

14 (/pdftex | luatex)

115 (xdvipdfmx | xdvipdfmx)

116 % put in \@kernel@after@shipout@lastpage

117 \tl_gput_right:Nn \@kernel@after@shipout@lastpage

119 \g__kernel_pdfmanagement_end_run_code_tl

120 T

121 (/dvipdfmx | xdvipdfmx)

122 (xdvips)

123 % put in \@kernel@after@shipout@lastpage

124 \tl_gput_right:Nn\@kernelQafter@shipout@lastpage
125 {

126 \g__kernel_pdfmanagement_end_run_code_tl

127 }

128 (/dvips)

__pdf backend Pages primitive:n

1.6.2 Add the “shipout” hooks

Now we add to the shipout hooks the relevant token lists. We also push the page resources
in shipout/firstpage (AtBeginDvi) as the backend code sets color stack there. The xetex
driver needs a rule here. If it clashes on the first page, we will need a test ...

120 (kdrivers)

130 \tl_if_exist:NTF \@kernel@after@shipout@background

131 {

132 \g@addto@macro \@kernel@before@shipout@background{\relax}
133 \g@addto®macro \@kernel@after@shipout@background

134 {

135 \g__kernel_pdfmanagement_thispage_shipout_code_tl
136 ¥

137 T

138 {

139 \hook_gput_code:nnn{shipout/background}{pdf}

140 {

141 \g__kernel_pdfmanagement_thispage_shipout_code_tl
142 }

143 }

145 (/drivers)

1.7 The /Pages dictionary (pdfpagesattr)

This is the primitive command to add something to the /Pages dictionary. It works
differently for the backends: pdftex and luatex overwrite existing content, dvips and
dvipdfmx are additive. luatex sets it in lua. The higher level code has to take this into
account.

s (kpdftex)

17 \cs_new_protected:Npn __pdf_backend_Pages_primitive:n #1

148 {

149 \tex_global:D \tex_pdfpagesattr:D { #1 }

150 }
1 (/pdftex)
s2 (xluatex)
153 hluatex: does it in lua
152 \cs_new_protected:Npn __pdf_backend_Pages_primitive:n #1

=

155 {

156 \tex_directlua:D

157 {

158 pdf .setpagesattributes(__pdf_backend_luastring:n { #1 })
159 ¥

160 3

61 (/luatex)

162 (*dvi pS>

163 \cs_new_protected:Npx __pdf_backend_Pages_primitive:n #1
164 {

165 \tex_special:D{ps:~ [#1~/PAGES~pdfmark} %]

166 T

167 (/dvips)

o¢ (*dvipdfmx | xdvipdfmx)
10 \cs_new_protected:Npn __pdf_backend_Pages_primitive:n #1

__pdf backend Page primitive:n
__pdf_backend_Page_gput:nn
__pdf backend Page gremove:n

__pdf backend ThisPage gput:nn

__pdf backend ThisPage gpush:n

170 {

171 __pdf_backend:n{put~@pages~<<#1>>}

172 }

173 (/dvipdfmx | xdvipdfmx)

17 (*dvisvgm)

175 \cs_new_protected:Npn __pdf_backend_Pages_primitive:n #1
e {}

177 (/dvisvgm)

(End of definition for __pdf_backend_Pages_primitive:n.)

1.8 “Page” and “ThisPage” attributes (pdfpageattr)

__pdf_backend_Page_primitive:n is the primitive command to add something to the
/Page dictionary. It works differently for the backends: pdftex and luatex overwrite
existing content, dvips and dvipdfmx are additive. luatex sets it in lua. The higher
level code has to take this into account. __pdf_backend_Page_gput :nn stores default
values. __pdf_backend_Page_gremove:n allows to remove a value. __pdf_backend_-
ThisPage_gput:nn adds a value to the current page. __pdf_backend_ThisPage_-
gpush:n merges the default and the current page values and add them to the dictionary
of the current page in \g__pdf_backend_thispage_shipout_tl.

175 % backend commands

179 <* pdftex)

150 %the primitive

181 \cs_new_protected:Npn __pdf_backend_Page_primitive:n #1
182 {

183 \tex_global:D \tex_pdfpageattr:D { #1 }

184 }

15 /% the command to store default values.

156 % Uses a prop with pdflatex + dvi,

17 /% sets a lua table with lualatex

s \cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2 Jkey,value
189 {

190 \pdfdict_gput:nnn {g__pdf_Core/Page}{ #1 }{ #2 }

191 }

192 % the command to remove a default value.

103 % Uses a prop with pdflatex + dvi,

104 % changes a lua table with lualatex

105 \cs_new_protected:Npn __pdf_backend_Page_gremove:n #1

196 {

107 \pdfdict_gremove:nn {g__pdf_Core/Page}{ #1 }

198 }

199 % the command used in the document.

20 % direct call of the primitive special with dvips/dvipdfmx
201 % \latelua: fill a page related table with lualatex, merge it with the page
202 % table and push it directly

203 % write to aux and store in prop with pdflatex

204 \cs_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2
205 {

206 %we need to know the page the resource should be added too.
207 \int_gincr:N\g__pdf_backend_resourceid_int
208 __pdf_backend_record_abspage:e { 13pdf\int_use:N\g__pdf_backend_resourceid_int }

209 \tl_set:Ne \1__pdf_tmpa_tl

{
__pdf_backend_ref_abspage:e {13pdf\int_use:N\g__pdf_backend_resourceid_int}

}
\pdfdict_if_exist:nF { g__pdf_Core/backend_Page\l__pdf_tmpa_tl}
{
\pdfdict_new:n { g__pdf_Core/backend_Page\l__pdf_tmpa_t1l}
}

%backend_Page has no handler.
\pdfdict_gput:nnn {g__pdf_Core/backend_Page\l__pdf_tmpa_t1}{ #1 }{ #2 }
}
%the code to push the values, used in shipout
Jmerges the two props and then fills the register in pdflatex
%merges the two tables and then fills (in lua) in luatex
%issues the values stored in the global prop with dvi
\cs_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1

{
\prop_gset_eq:Nc \g__pdf_tmpa_prop { __kernel_pdfdict_name:n { g__pdf_Core/Page } }
\prop_if_exist:cT { __kernel_pdfdict_name:n { g__pdf_Core/backend_Page#1l } }
{
\prop_map_inline:cn { __kernel_pdfdict_name:n { g__pdf_Core/backend_Page#1 } }
{
\prop_gput:Nnn \g__pdf_tmpa_prop { ##1 }{ ##2 }
}
__pdf_backend_Page_primitive:e
{
\prop_map_function:NN \g__pdf_tmpa_prop \pdfdict_item:ne
}
}
(/pdftex)
(*luatex)

\cs_new:Npn __pdf_backend_luastring:n #1
{
"\tex_luaescapestring:D { \tex_unexpanded:D { #1 } }"
}
/not used, only there for consistency
\cs_new_protected:Npn __pdf_backend_Page_primitive:n #1

{
\tex_latelua:D
{
pdf . setpageattributes (__pdf_backend_luastring:n { #1 })
}
}

% the command to store default values.
% Uses a prop with pdflatex + dvi,
% sets a lua table with lualatex
\cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2
{
\tex_directlua:D
{
1tx.__pdf.backend_Page_gput
(
__pdf_backend_luastring:n { #1 I},

265

266

267

268

269

\c

"
h
h
%
h

\C

\c

__pdf_backend_luastring:n { #2 }
)
}
}
% the command to remove a default value.
% Uses a prop with pdflatex + dvi,
% changes a lua table with lualatex

s_new_protected:Npn __pdf_backend_Page_gremove:n #1
{
\tex_directlua:D
{
1ltx.__pdf.backend_Page_gremove (__pdf_backend_luastring:n { #1 })
}
}

the command used in the document.

direct call of the primitive special with dvips/dvipdfmx

\latelua: fill a page related table with lualatex, merge it with the page
table and push it directly

write to aux and store in prop with pdflatex

s_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2
{
\tex_latelua:D
{
1tx.__pdf.backend_ThisPage_gput
(
tex.count ["g_shipout_readonly_int"],
__pdf_backend_luastring:n { #1 I},
__pdf_backend_luastring:n { #2 }
)
1tx.__pdf.backend_ThisPage_gpush (tex.count["g_shipout_readonly_int"])
}
}

%the code to push the values, used in shipout
/merges the two props and then fills the register in pdflatex
/merges the two tables (the one is probably still empty) and then fills (in lua) in luatex
%issues the values stored in the global prop with dvi
s_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1
{
\tex_latelua:D
{
1ltx.__pdf.backend_ThisPage_gpush (tex.count["g_shipout_readonly_int"])

}

X

(/luatex)
(*dvipdfmx | xdvipdfmx)

\c

%the primitive

s_new_protected:Npn __pdf_backend_Page_primitive:n #1
{

\tex_special :D{pdf: ~put~@thispage~<<#1>>}
}

% the command to store default values.
% Uses a prop with pdflatex + dvi,
% sets a lua table with lualatex

;15 \cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2
319 {

320 \pdfdict_gput:nnn {g__pdf_Core/Page}{ #1 }{ #2 }

321 }

32 % the command to remove a default value.

23 % Uses a prop with pdflatex + dvi,

24 % changes a lua table with lualatex

25 \cs_new_protected:Npn __pdf_backend_Page_gremove:n #1
326 {

327 \pdfdict_gremove:nn {g__pdf_Core/Page}{ #1 }

329 % the command used in the document.

330 % direct call of the primitive special with dvips/dvipdfmx

331 % \latelua: fill a page related table with lualatex, merge it with the page
332 % table and push it directly

133 % write to aux and store in prop with pdflatex

332 \cs_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2

335 {

336 __pdf_backend_Page_primitive:n { /#1~#2 }

337 }

332 hthe code to push the values, used in shipout

30 fmerges the two props and then fills the register in pdflatex
20 jmerges the two tables (the one is probably still empty)

341 % and then fills (in lua) in luatex

2 fhissues the values stored in the global prop with dvi
23 \cs_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1
PR

345 __pdf_backend_Page_primitive:e

346 { \pdfdict_use:n { g__pdf_Core/Page} }

347 }

sie (/dvipdfmx | xdvipdfmx)

349 <*dvips>

350 \cs_new_protected:Npn __pdf_backend_Page_primitive:n #1
351 {

352 \tex_special:D{ps:~[{ThisPage}<<#1>>~/PUT~pdfmark} %]
353 }

354 % the command to store default values.
355 % Uses a prop with pdflatex + dvi,

36 /% sets a lua table with lualatex

;57 \cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2
358 {

359 \pdfdict_gput:nnn {g__pdf_Core/Page}{ #1 }{ #2 }
360 }

361 % the command to remove a default value.

52 % Uses a prop with pdflatex + dvi,

3 /% changes a lua table with lualatex

364 \cs_new_protected:Npn __pdf_backend_Page_gremove:n #1

365 {

366 \pdfdict_gremove:nn {g__pdf_Core/Page}{ #1 }

367 }

s6 /% the command used in the document.

0/ direct call of the primitive special with dvips/dvipdfmx
50 % \latelua: fill a page related table with lualatex, merge it with the page
;1 % table and push it directly

\c_ pdf backend PageResources clist

52 % write to aux and store in prop with pdflatex

373 \cs_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2

374 {

375 __pdf_backend_Page_primitive:n { /#1~#2 }

376 }

577 hthe code to push the values, used in shipout

;7 fmerges the two props and then fills the register in pdflatex
39 Ymerges the two tables (the one is probably still empty)

350 hand then fills (in lua) in luatex

381 %issues the values stored in the global prop with dvi
s \cs_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1
383 {

384 __pdf_backend_Page_primitive:e

385 { \pdfdict_use:n { g__pdf_Core/Pagel} }

386 }

387 </dVipS>

388 <*dvisvgm>

30 % mostly only dummies ...

300 \cs_new_protected:Npn __pdf_backend_Page_primitive:n #1
391 {}

32 % Uses a prop with pdflatex + dvi,

303 \cs_new_protected:Npn __pdf_backend_Page_gput:nn #1 #2
394 {

305 \pdfdict_gput:nnn {g__pdf_Core/Page}{ #1 }{ #2 }

396 }

307 % the command to remove a default value.

¢ % Uses a prop with pdflatex + dvi,

0 \cs_new_protected:Npn __pdf_backend_Page_gremove:n #1
400 {

401 \pdfdict_gremove:nn {g__pdf_Core/Page}{ #1 }

402 }

403 % the command used in the document.

204 \cs_new_protected:Npn __pdf_backend_ThisPage_gput:nn #1 #2
405 {}

w06 hthe code to push the values, used in shipout

207 \cs_new_protected:Npn __pdf_backend_ThisPage_gpush:n #1
408 {}

409 </dViSng>

a0 (xdrivers)

211 \cs_generate_variant:Nn __pdf_backend_Page_primitive:n { e }
412 (/drivers)

(End of definition for __pdf_backend_Page_primitive:n and others.)

1.9 “Page/Resources”: ExtGState, ColorSpace, Shading, Pat-
tern

Path: Page/Resources/ExtGState etc. The actual output of the resources is handled
together with the bdc/Properties. Here is only special code.

The names are quite often needed a similar list is now in 13pdfmanagement. Perhaps it
should be merged.

a3 (xdrivers)
214 \clist_const:Nn \c__pdf_backend_PageResources_clist

10

\

__pdf backend PageResources gput:nnn

__pdf backend PageResources obj gpush:

416 ExtGState,
417 ColorSpace,
418 Pattern,

419 Shading,

420 }

421 (/drivers)

(End of definition for \c__pdf_backend_PageResources_clist.)
Now the backend commands the command to fill the register and to push the values.

stores values for the page resources.

#1 : name of the resource (ExtGState, ColorSpace, Shading, Pattern)
#2 : a pdf name without slash

#3 : value

This pushes out the objects. It should be a no-op with xdvipdfmx and dvips as it currently
issued in the end-of-run hook! create the backend objects:

122 (xpdftex | luatex)
23 \clist_map_inline:Nn \c__pdf_backend_PageResources_clist

424 {

425 \pdf_object_new:n {__pdf/Page/Resources/#1}

426 \cs_if_exist:NT \tex_directlua:D

427 {

428 \tex_directlua:D

429 {

430 ltx.__pdf.object["__pdf/Page/Resources/#1"]
431 =

432 "\pdf _object_ref:n{__pdf/Page/Resources/#1}"
433 }

434 }

435 }

156 {/pdftex | luatex)
values are only stored in a prop and will be output at end document. luatex must also
trigger the lua side

437 (*Iuatex)

233 \cs_new_protected:Npn __pdf_backend_PageResources_gput:nnn #1 #2 #3
439 {

440 \pdfdict_gput:nnn {g__pdf_Core/Page/Resources/#1} { #2 }{ #3 }

441 \tex_directlua:D{ltx.__pdf.Page.Resources.#1l=true}

442 \tex_directlua:D

443 {

444 1tx.pdf.Page_Resources_gpush(tex.count["g_shipout_readonly_int"])
445 }

446 }

447 (/Iuatex)

448 <* pdftex)

w0 \cs_new_protected:Npn __pdf_backend_PageResources_gput:nnn #1 #2 #3
450 {

451 \pdfdict_gput:nnn {g__pdf_Core/Page/Resources/#1} { #2 }{ #3 }
452 }

453 (/pdftex)

11

482 {

483 __pdf_backend:n {put~@resources~<<#1>>}
a4 ¥
235 \cs_new_protected:Npn __pdf_backend_PageResources
486 {
487 % this is not used for output, but there is a t
488 \prop_gput:cne { __kernel_pdfdict_name:n { g_._
489 { \str_convert_pdfname:n {#2} }{ #3 }
490 %objects are not filled with \pdf_object_write
491 __pdf_backend:e
492 {
code for end of document code 493) put~\pdf_object_ref:n {__pdf/Page/Resource

a0 (xpdftex | luatex) :; }

455 \cs_new_protected:Npn __pdf_backend_Pag%Resources_obj_gpush:

wo 1 207 \cs_new_protected:Npn __pdf_backend_PageResources

457 \ctist_map_inline:Nn \c__pdf_backenq%P%gggﬁﬁﬂHggﬁgﬁﬁﬁaﬁgx>

458

459 \prop_if_empty:cF

460 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/##1} }

461 { 12

a62 \pdf_object_write:nne

463 { __pdf/Page/Resources/##1 } { dict }

464 { \pdfdict_use:n { g__pdf_Core/Page/Resources/##1} }

465 }

466 }

A67 }

s (/pdftex | luatex)
xdvipdfmx

dvips unneeded, or no-op. The push command should not be used as it is in the wrong
end document hook. If needed a new command must be added.
499 <>deipS>
so0 \cs_new_protected:Npn __pdf_backend_PageResources:n #1 {}
s00 \cs_new_protected:Npn __pdf_backend_PageResources_gput:nnn #1 #2 #3
so { %only for the show command TEST!!
503 \pdfdict_gput:nnn {g__pdf_Core/Page/Resources/#1} { #2 }{ #3 }
504 }
505 \cs_new_protected:Npn __pdf_backend_PageResources_obj_gpush: {}
506 </dvips>
dvipsvgm unneeded, or no-op
so7 (*dvisvgm)
s0s \cs_new_protected:Npn __pdf_backend_PageResources:n #1 {}
s0 \cs_new_protected:Npn __pdf_backend_PageResources_gput:nnn #1 #2 #3
sio { %only for the show command TEST!!
511 \pdfdict_gput:nnn {g__pdf_Core/Page/Resources/#1} { #2 }{ #3 }
512 }
513 \cs_new_protected:Npn __pdf_backend_PageResources_obj_gpush: {}
514 </dvisvgm)

(End of definition for __pdf_backend_PageResources_gput:nnn and __pdf_backend_PageResources_-
obj_gpush:.)

1.9.1 Page resources /Properties + BDC operators

__pdf_backend_bdc:nn __pdf_backend_bdc:nn, __pdf_backend_shipout_bdc:ee, __pdf_backend_bdcobject:nn,
_ pdf backend shipout bdc:ee __pdf_backend_bdcobject:n, __pdf_backend_bmc:n and __pdf_backend_emc: are
__pdf_backend_bdcobject:nn the backend command that create the bdc/emc marker and store the properties.
__pdf_backend_bdcobject:n __pdf_backend_PageResources_gpush:n outputs the /Properties and/or the other re-
__pdf_backend_bmc:n sources for the current page.
__pdf_backend_emc: pdftex and luatex (and perhaps dvips ...) need to know if there are in a xform stream
_ pdf backend PageResources gpush:n
sis (xdrivers)
si6 \bool_new:N \1__pdf_backend_xform_bool
517 (/drivers)
dvips is easy: create an object, and reference it in the bdc ghostscript will then au-
tomatically replace it by a name and add the name to the /Properties dict, special vari-
ant von accsupp https://chat.stackexchange.com/transcript/message/50831812#
50831812
518 <*dvips>
519 %
520 \cs_set_protected:Npn __pdf_backend_bdc:nn #1 #2 I, #1 eg. Span, #2: dict_content
521 {
522 __pdf_backend_pdfmark:n{/#1~<<#2>>~/BDC}
523 3
There is not difference here between inline and property BDC, it is always a property:
52 \cs_set_eq:NN __pdf_backend_bdc_contobj:nn __pdf_backend_bdc:nn
525 \cs_set_eq:NN __pdf_backend_bdc_contstream:nn __pdf_backend_bdc:nn

527 \cs_new_protected:Npn __pdf_backend_bdc_shipout:ee #1 #2 7, #1 eg. Span, #2: dict_content
528 {

13

https://chat.stackexchange.com/transcript/message/50831812#50831812
https://chat.stackexchange.com/transcript/message/50831812#50831812

__kernel_backend_shipout_literal:e
{ps: SDict ~ begin ~ mark /#1~<<#2>>~/BDC ~ pdfmark ~ end }

\cs_set_protected:Npn __pdf_backend_bdcobject:nn #1 #2 % #1 eg. Span, #2: object name
¢ __pdf_backend_pdfmark:e{/#1~\pdf_object_ref :n{#2}~/BDC}
\ci_set_protected:an __pdf_backend_bdcobject:n #1 I #1 eg. Span,
¢ __pdf_backend_pdfmark:e{/#1~__pdf_backend_object_last:~/BDC}
\ci_set_protected:an __pdf_backend_emc:
¢ __pdf_backend_pdfmark:n{/EMC} %
\ci_set_protected:an __pdf_backend_bmc:n #1
¢ __pdf_backend_pdfmark:n{/#1~/BMC} %
\ci_new_protected:an __pdf_backend_PageResources_gpush:n #1 {}

(/dvips)

(*dvisvgm)

% dvisvgm should do nothing

yA

\cs_set_protected:Npn __pdf_backend_bdc:nn #1 #2 % #1 eg. Span, #2: dict_content
{r

\cs_set_eq:NN __pdf_backend_bdc_contobj:nn __pdf_backend_bdc:nn

\cs_set_eq:NN __pdf_backend_bdc_contstream:nn __pdf_backend_bdc:nn

\cs_set_protected:Npn __pdf_backend_shipout_bdc:ee #1 #2 % #1 eg. Span, #2: dict_content
{3

> \cs_set_protected:Npn __pdf_backend_bdcobject:nn #1 #2 7, #1 eg. Span, #2: object name

{}

\cs_set_protected:Npn __pdf_backend_bdcobject:n #1 7, #1 eg. Span,
{}

\cs_set_protected:Npn __pdf_backend_emc:
{r

s \cs_set_protected:Npn __pdf_backend_bmc:n #1

>
\cs_new_protected:Npn __pdf_backend_PageResources_gpush:n #1 {}

(/dvisvgm)
%

% xetex has to create the entries in the /Properties manually

s % (like the other backends)
s % use pdfbase special

% https://chat.stackexchange.com/transcript/message/50832016#50832016

% the property is added to xform resources automatically,

% no need to worry about it.

(*xdvipdfmx | xdvipdfmx)

\cs_set_protected:Npn __pdf_backend_bdcobject:nn #1 #2), #1 eg. Span, #2: object name
{

14

610

611

612

613

614

615

616

617

618

619

622

623

624

625

626

627

628

629

630

631

634

635

636

\int_gincr:N \g__pdf_backend_name_int
__kernel_backend_literal:e

{
pdf:code~/#1/13pdf\int_use:N\g__pdf_backend_name_int\c_space_tl BDC
}
__kernel_backend_literal:e
{
pdf :put~Qresources~
<<
/Properties~
<<
/13pdf\int_use:N\g__pdf_backend_name_int\c_space_tl
\pdf_object_ref:n { #2 }
>>
>>
}

}
\cs_set_protected:Npn __pdf_backend_bdcobject:n #1 7 #1 eg. Span
{
\int_gincr:N \g__pdf_backend_name_int
__kernel_backend_literal:e

{
pdf :code~/\exp_not:n{#1}/13pdf\int_use:N\g__pdf_backend_name_int\c_space_t1l BDC
}
__kernel_backend_literal:e
{
pdf :put~@resources~
<<
/Properties~
<<
/13pdf\int_use:N\g__pdf_backend_name_int\c_space_tl
__pdf_backend_object_last:
>>
>>
}
}
\cs_set_protected:Npn __pdf_backend_bmc:n #1
{
__kernel_backend_literal:n {pdf:code~/#1~BMC} Ypdfbase
}

%this require management
\cs_set_protected:Npn __pdf_backend_bdc_contobj:nn #1 #2
{
\pdf_object_unnamed_write:nn { dict }{ #2 }
__pdf_backend_bdcobject:n { #1 }
}

\cs_set_protected:Npn __pdf_backend_bdc_contstream:nn #1 #2
{
__kernel_backend_literal:n {pdf:code~ /#1~<<#2>>~BDC }
}

\cs_set_protected:Npn __pdf_backend_bdc:nn #1 #2

15

637 {

638 \cs_gset_eq:NN __pdf_backend_bdc:nn __pdf_backend_bdc_contobj:nn
639 __pdf_backend_bdc:nn {#1}{#2}

640 }

6> \cs_set_protected:Npn __pdf_backend_bdc_shipout_contstream:ee #1 #2

643 {

644 __kernel_backend_shipout_literal:e {pdf:code~ /#1~<<#2>>~BDC }

645 }

s \cs_set_eq:NN __pdf_backend_bdc_shipout:ee __pdf_backend_bdc_shipout_contstream:ee
647

s1s \cs_set_protected:Npn __pdf_backend_emc:

649 {

650 __kernel_backend_literal:n {pdf:code~EMC} Jpdfbase

651 }

62/ properties are handled automatically, but the other resources should be added
o3 % at shipout

652 \cs_new_protected:Npn __pdf_backend_PageResources_gpush:n #1

655 {

656 \clist_map_inline:Nn \c__pdf_backend_PageResources_clist

657 {

658 \prop_if_empty:cF { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/##1} }
659

660 __kernel_backend_literal:e

661 {

662 pdf :put~Q@resources~

663 <</##1~\pdf_object_ref:n {__pdf/Page/Resources/##1}>>
664 }

665 }

666 }

667 3

sss (/dvipdfmx | xdvipdfmx)

o0 % luatex + pdftex

o (*luatex)

o1 \cs_set_protected:Npn __pdf_backend_bdcobject:nn #1 #2 % #1 eg. Span, #2: object name
672 {

673 \int_gincr:N \g__pdf_backend_name_int

674 __kernel_backend_literal_page:e

675 { /#1 ~ /13pdf\int_use:N\g__pdf_backend_name_int\c_space_t1l BDC }

676 \bool_if:NTF \1__pdf_backend_xform_bool

6

A

677 {

678 \pdfdict_gput:nee

679 { g__pdf_Core/Xform/Resources/Properties }
680 { 13pdf\int_use:N\g__pdf_backend_name_int }
681 { \pdf_object_ref:n { #2 } }

682 }

683 {

684 \exp_args:Ne \tex_latelua:D

685 {

686 1tx.pdf .Page_Resources_Properties_gput

687 (

688 tex.count ["g_shipout_readonly_int"],
689 "13pdf\int_use:N\g__pdf_backend_name_int",
690 "\pdf_object_ref:n { #2 }"

16

692 }

693 }

604}

o5 \cs_set_protected:Npn __pdf_backend_bdcobject:n #1% #1 eg. Span
696 {

697 \int_gincr:N \g__pdf_backend_name_int

698 __kernel_backend_literal_page:e

699 { /\exp_not:n{#1} ~ /13pdf\int_use:N\g__pdf_backend_name_int\c_space_tl BDC }
700 \bool_if:NTF \1__pdf_backend_xform_bool

701 {

702 \pdfdict_gput:nee %no handler needed

703 { g__pdf_Core/Xform/Resources/Properties }

704 { 13pdf\int_use:N\g__pdf_backend_name_int }

705 { __pdf_backend_object_last: }

706 }

707 {

708 \exp_args:Ne \tex_latelua:D

709 {

710 1tx.pdf.Page_Resources_Properties_gput

711 (

712 tex.count["g_shipout_readonly_int"],

713 "13pdf\int_use:N\g__pdf_backend_name_int",
714 "__pdf_backend_object_last:"

715)

716 }

717 }

718 T

710 \cs_set_protected:Npn __pdf_backend_bmc:n #1

720 {

721 __kernel_backend_literal_page:n { /#1~BMC }

722 }

723 \cs_set_protected:Npn __pdf_backend_bdc_contobj:nn #1 #2
724 {

725 \pdf_object_unnamed_write:nn { dict } { #2 }

726 __pdf_backend_bdcobject:n { #1 }

727 T

725 \cs_set_protected:Npn __pdf_backend_bdc_contstream:nn #1 #2
729 {

730 __kernel_backend_literal_page:n { /#1~<<#2>>~BDC }
731 }

733 \cs_set_eq:NN __pdf_backend_bdc:nn __pdf_backend_bdc_contstream:nn

735 \cs_set_protected:Npn __pdf_backend_bdc_shipout_contstream:ee #1 #2

736 {

737 __kernel_backend_shipout_literal_page:e { /#1~<<#2>>~BDC }

738 }

720 \cs_set_eq:NN __pdf_backend_bdc_shipout:ee __pdf_backend_bdc_shipout_contstream:ee

71 \cs_set_protected:Npn __pdf_backend_emc:

742 {

743 __kernel_backend_literal_page:n { EMC }
744 }

17

745

746

7

~

\cs_

new_protected:Npn __pdf_backend_PageResources_gpush:n #1 {}

(/luatex)

pdflatex is the most complicated if we want to use properties as it has to go through the
aux ... the push command is extended to take other resources too

748 <* pdftex)

749

790

791

792

793

\cs_

{

}

\cs_

{

set_protected:Npn __pdf_backend_bdcobject:nn #1 #2 % #1 eg. Span, #2: object name

\int_gincr:N \g__pdf_backend_name_int
__kernel_backend_literal_page:e
{ /#1 ~ /13pdf\int_use:N\g__pdf_backend_name_int\c_space_t1l BDC }
% code to set the property
\int_gincr:N\g__pdf_backend_resourceid_int
\bool_if:NTF \1__pdf_backend_xform_bool
{
\pdfdict_gput:nee %no handler needed
{ g__pdf_Core/Xform/Resources/Properties }
{ 13pdf\int_use:N\g__pdf_backend_resourceid_int }
{ \pdf_object_ref:n { #2 } }

-~

__pdf_backend_record_abspage:e {13pdf\int_use:N\g__pdf_backend_resourceid_int}
\tl_set:Ne \1__pdf_tmpa_tl
{
__pdf_backend_ref_abspage:e{13pdf\int_use:N\g__pdf_backend_resourceid_int}
}
\pdfdict_if_exist:nF { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties
{
\pdfdict_new:n { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }
}
\pdfdict_gput:nee
{ g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }
{ 13pdf\int_use:N\g__pdf_backend_resourceid_int }
{ \pdf_object_ref:n{#2} }
}

set_protected:Npn __pdf_backend_bdcobject:n #1} #1 eg. Span

\int_gincr:N \g__pdf_backend_name_int
__kernel_backend_literal_page:e
{ /\exp_not:n{#1} ~ /13pdf\int_use:N\g__pdf_backend_name_int\c_space_tl BDC }
% code to set the property
\int_gincr:N\g__pdf_backend_resourceid_int
\bool_if:NTF \1__pdf_backend_xform_bool
{
\pdfdict_gput:nee
{ g__pdf_Core/Xform/Resources/Properties }
{ 13pdf\int_use:N\g__pdf_backend_resourceid_int }
{ __pdf_backend_object_last: }

__pdf_backend_record_abspage:e{1l3pdf\int_use:N\g__pdf_backend_resourceid_int}
\tl_set:Ne \1__pdf_tmpa_tl

18

797

798

846

847

848

}

{
__pdf_backend_ref_abspage:e{13pdf\int_use:N\g__pdf_backend_resourceid_int}

}
\pdfdict_if_exist:nF { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties

{
\pdfdict_new:n { g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }

}

\pdfdict_gput:nee
{ g__pdf_Core/backend_Page\l__pdf_tmpa_tl/Resources/Properties }
{ 13pdf\int_use:N\g__pdf_backend_resourceid_int }
{ __pdf_backend_object_last: }
%\pdfdict_show:n { g_backend_Page\l__pdf_tmpa_tl/Resources/Properties }
}

\cs_set_protected:Npn __pdf_backend_bmc:n #1

{

}

__kernel_backend_literal_page:n { /#1~BMC }

\cs_set_protected:Npn __pdf_backend_bdc_contobj:nn #1 #2

{

}

\pdf_object_unnamed_write:nn { dict } { #2 }
__pdf_backend_bdcobject:n { #1 }

\cs_set_protected:Npn __pdf_backend_bdc_contstream:nn #1 #2

{

}

__kernel_backend_literal_page:n { /#1~<<#2>>~BDC }

use by default the direct BDC.
\cs_set_eq:NN __pdf_backend_bdc:nn __pdf_backend_bdc_contstream:nn

\cs_set_protected:Npn __pdf_backend_bdc_shipout_contstream:ee #1 #2

{

}

__kernel_backend_shipout_literal_page:e { /#1~<<#2>>~BDC }

\cs_set_eq:NN __pdf_backend_bdc_shipout:ee __pdf_backend_bdc_shipout_contstream:ee

\cs_set_protected:Npn __pdf_backend_emc:

{

}

{

__kernel_backend_literal_page:n { EMC }

7 \cs_new:Npn __pdf_backend_PageResources_gpush_aux:n #1 %#1 ExtGState etc

\prop_if_empty:cF
{ __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/#1} }
{
\pdfdict_item:ne { #1 }{ \pdf_object_ref:n {__pdf/Page/Resources/#1}}
}

\cs_new_protected:Npn __pdf_backend_PageResources_gpush:n #1

{

\exp_args:NNe \tex_global:D \tex_pdfpageresources:D

19

849 {

850 \prop_if_exist:cT

851 { __kernel_pdfdict_name:n { g__pdf_Core/backend_Page#1/Resources/Properties } }
852 {

853 /Properties~

854 <<

855 \prop_map_function:cN

856 { __kernel_pdfdict_name:n { g__pdf_Core/backend_Page#1/Resources/Propert
857 \pdfdict_item:ne

858 >>

859 }

860 %% add ExtGState etc

861 \clist_map_function:NN

862 \c__pdf_backend_PageResources_clist

863 __pdf_backend_PageResources_gpush_aux:n
864 ¥

865 }

866

867 (/pdftex)

(End of definition for __pdf_backend_bdc:nn and others.)

1.10 “Catalog” & subdirectories (pdfcatalog)

The backend command is already in the driver: __pdf_backend_catalog_gput:nn

1.10.1 Special case: the /Names/EmbeddedFiles dictionary

Entries to /Names are handled differently, in part (/Desc) it is automatic, for other special
commands like \pdfnames must be used. For EmbeddedFiles dvips wants code for every
file and then creates the Name tree automatically. Other name trees are ignored. TODO:
Currently the code for EmbeddedFiles is still a bit different but this should be merged,
all name trees should be handled with the same code.

868 pdflatex

a0 (*pdftex)

s70 \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 ’#1 name of name tree, #2 array cc
871 {

872 \pdf_object_unnamed_write:nn {dict} {/Names [#2] }

873 \tex_pdfnames:D {/#1~\pdf_object_ref_last:}

874 }

a5 {/pdftex)

s76 (*luatex)

¢77 \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 ’%#1 name of name tree, #2 array cc
878 {

879 \pdf_object_unnamed_write:nn {dict} {/Names [#2] }

880 \tex_pdfextension:D~names~ {/#1~\pdf_object_ref_last:}

881 }

882 (/Iuatex)

se3 (xdvipdfmx | xdvipdfmx)

s« \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 ’#1 name of name tree, #2 array cc
885 {

886 \pdf_object_unnamed_write:nn {dict} {/Names [#2] }

887 __pdf_backend:e {put~@names~<</#1~\pdf_object_ref_last: >>}

888 T

20

__pdf_backend NamesEmbeddedFiles add:nn

se0 (/dvipdfmx | xdvipdfmx)

201 Ahdvips: noop

892 <>deipS>

203 \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 {3}
sos {/dvips)

85 Khdvisvgm: noop

896 (*dvisvgm)

207 \cs_new_protected:Npn __pdf_backend_Names_gpush:nn #1 #2 {}
sos (/dvisvgm)

EmbeddedFiles is a bit special. For once we need backend commands for dvips. But we
want also an option to create the name on the fly.

dvips need special backend code to create the name tree. With the other engines it does
nothing.

soo (xpdftex | luatex | dvipdfmx | xdvipdfmx)

oo \cs_new_protected:Npn __pdf_backend_NamesEmbeddedFiles_add:nn #1 #2 {3}

o1 (/pdftex | luatex | dvipdfmx | xdvipdfmx)

902 (*dvips)

o3 \cs_new_protected:Npn __pdf_backend_NamesEmbeddedFiles_add:nn #1 #2

904 {

905 __pdf_backend_pdfmark:e
906 {

907 /Name~#1~

908 /FS~#2~

909 /EMBED

910 }

011 }

912 </dvips>

013 (*dvisvgm)

o4 %no op. Or is there any sensible use for it?

15 \cs_new_protected:Npn __pdf_backend_NamesEmbeddedFiles_add:nn #1 #2
916 {}

917

918 </dvisvgm)

9

(End of definition for __pdf_backend_NamesEmbeddedFiles_add:nn.)

1.10.2 Additional annotation commands

Starting with texlive 2021 pdftex and luatex offer commands to interrupt a link. That
can for example be used to exclude the header and footer from the link. The backend
support is now in 13kernel. We only provide the user command.

919 (*pdftex)
020 \cs_if_exist:NT \pdfrunninglinkoff

921 {

922 \cs_set_protected:Npn __pdfannot_backend_link_off:
923 {

924 \pdfrunninglinkoff

925 3

926 \cs_set_protected:Npn __pdfannot_backend_link_on:
927 {

928 \pdfrunninglinkon

21

__pdf backend xform new:nnnn

__pdf_backend_xform_use:n
__pdf_backend_xform_ref:n

929

930

931

}
}
(/pdftex)

1.10.3 Split links

With luatex we use luacode to handle link annotations. This allows us to retrieve the
annotations as needed by the tagging code. It also allow to prevent that link areas spill
over into unwanted regions like footnotes. See the documentation in lualinksplit.lua for
more details. We therefore add a plug for the build/column/footnotes.

932

933

934

935

936

9

37

9

@

8

(*luatex)

\lua_load_module:n{lualinksplit}

\NewSocketPlug{build/column/footnotes}{lualinksplit}{/
\setbox\footins=\vbox{\pdfextension linkstate-2\unvbox\footins}y,

}

\AssignSocketPlug{build/column/footnotes}{lualinksplit}

(/luatex)

1.10.4 Form XObject / backend

#1 :
#2 :
#3 :
#4 .

939

940

941

942

943

944

959

960

961

962

963

964

name

attributes

resources needed?? or are all resources autogenerated?
content, this doesn’t need to be a box!

(xpdftex)
\cs_new_protected:Npn __pdf_backend_xform_new:nnnn #1 #2 #3 #4
% #1 name
% #2 attributes
% #3 resources
% #4 content, not necessarily a box!
{
\hbox_set:Nn \1__pdf_backend_tmpa_box
{
\bool_set_true:N \1__pdf_backend_xform_bool
\prop_gclear:c {__kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Properties }}
#4
}
%store the dimensions
\tl_const:ce
{ c__pdf_backend_xform_wd_ \tl_to_str:n {#1} _tl }
{ \tex_the:D \box_wd:N \1__pdf_backend_tmpa_box }
\tl_const:ce
{ c__pdf_backend_xform_ht_ \tl_to_str:n {#1} _tl }
{ \tex_the:D \box_ht:N \1__pdf_backend_tmpa_box }
\tl_const:ce
{ c__pdf_backend_xform_dp_ \tl_to_str:n {#1} _tl }
{ \tex_the:D \box_dp:N \1__pdf_backend_tmpa_box }
%% do we need to test if #2 and #3 are empty??
\tex_immediate:D \tex_pdfxform:D
~ attr ~{ #2 }
%% which other resources should be default? Is an argument actually needed?

22

966 ~ resources -~

967 {

968 #3

969 \int_compare:nNnT

970 { \prop_count:c { __kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Propertie
971 >

972 { O }

973 {

o74 /Properties~

975 <<

o76 \pdfdict_use:n { g__pdf_Core/Xform/Resources/Properties }
977 >>

o78 }

979

980 \prop_if_empty:cF

981 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/ExtGState } }
982 {

083 /ExtGState~ \pdf_object_ref:n { __pdf/Page/Resources/ExtGState }

984 }

085 \prop_if_empty:cF

086 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/Pattern } }
987 {

088 /Pattern~ \pdf_object_ref:n { __pdf/Page/Resources/Pattern }
989 }

990 \prop_if_empty:cF

901 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/Shading } }
992 {

993 /Shading~ \pdf_object_ref:n { __pdf/Page/Resources/Shading }

994 }

995 \prop_if_empty:cF

996 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/ColorSpace } }
997 {

998 /ColorSpace~ \pdf_object_ref:n { __pdf/Page/Resources/ColorSpace }
999 T

1000 }

1001 \1__pdf_backend_tmpa_box

1002 \int_const:cn

1003 { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }

1004 { \tex_pdflastxform:D }

1005 T

1006

1007 \cs_new_protected:Npn __pdf_backend_xform_use:n #1

1008 {

1009 \tex_pdfrefxform:D

1010 \int_use:c { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }

1011 \scan_stop:

1012 }

1013

1014 \cs_new:Npn __pdf_backend_xform_ref:n #1

1015 {

1016 \int_use:c { c__pdf_backend_xform_ \tl_to_str:n {#1} _int } ~ 0 ~ R

1017 3

1018 (/pdftex)
119 (xluatex)

23

1020 %luatex

1021 %nearly identical but not completely ...

1022 \cs_new_protected:Npn __pdf_backend_xform_new:nnnn #1 #2 #3 #4
1023 % #1 name

1024 % #2 attributes

1025 % #3 resources

1026 % #4 content, not necessarily a box!

1027 {

1028 \hbox_set:Nn \1__pdf_backend_tmpa_box

1029 {

1030 \bool_set_true:N \1__pdf_backend_xform_bool

1031 \prop_gclear:c { __kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Properties }
1032 #4

1033 }

1034 \tl_const:ce

1035 { c__pdf_backend_xform_wd_ \tl_to_str:n {#1} _t1 }

1036 { \tex_the:D \box_wd:N \1__pdf_backend_tmpa_box }

1037 \tl_const:ce

1038 { c__pdf_backend_xform_ht_ \tl_to_str:n {#1} _t1 }

1039 { \tex_the:D \box_ht:N \1__pdf_backend_tmpa_box }

1040 \tl_const:ce

1041 { c__pdf_backend_xform_dp_ \tl_to_str:n {#1} _t1 }

1042 { \tex_the:D \box_dp:N \1__pdf_backend_tmpa_box }

1043 %% do we need to test if #2 and #3 are empty??

1044 \tex_immediate:D \tex_pdfxform:D

1045 ~ attr ~ { #2 }

1046 %% which resources should be default? Is an argument actually needed?
1047 ~ resources -~

1048 {

1049 #3

1050 \int_compare:nNnT

1051 {\prop_count:c { __kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Properties
1052 >

1053 {0}

1054 {

1055 /Properties~

1056 <<

1057 \pdfdict_use:n { g__pdf_Core/Xform/Resources/Properties }
1058 >>

1059 }

1060 \prop_if_empty:cF

1061 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/ExtGState } }
1062 {

1063 /ExtGState~ \pdf_object_ref:n { __pdf/Page/Resources/ExtGState }
1064 }

1065 \prop_if_empty:cF

1066 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/Pattern } }
1067 {

1068 /Pattern~ \pdf_object_ref:n { __pdf/Page/Resources/Pattern }

1069 }

1070 \prop_if_empty:cF

1071 { __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/Shading } }
1072 {

1073 /Shading~ \pdf_object_ref:n { __pdf/Page/Resources/Shading }

24

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

7 \cs_

{

\cs_

{

}
\prop_if_empty:cF
{ __kernel_pdfdict_name:n { g__pdf_Core/Page/Resources/ColorSpace } }
{
/ColorSpace~ \pdf_object_ref:n { __pdf/Page/Resources/ColorSpace }
}
}
\1__pdf_backend_tmpa_box
\int_const:cn
{ c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
{ \tex_pdflastxform:D }

new_protected:Npn __pdf_backend_xform_use:n #1 Yprotected as with xelatex

\tex_pdfrefxform:D \int_use:c
{
c__pdf_backend_xform_ \tl_to_str:n {#1} _int
}

\scan_stop:

new:Npn __pdf_backend_xform_ref:n #1
\int_use:c { c__pdf_backend_xform_ \tl_to_str:n {#1} _int } ~ O ~ R }

(/luatex)

(*dvi
% xe

%
pA
A
%
%
%
%
A

pdfmx | xdvipdfmx)
tex
it needs a bit testing if it really works to set the box to O before the special
does it disturb viewing the xobject?
what happens with the resources (bdc)? (should work as they are specials too)
xetex requires that the special is in horizontal mode. This means it affects
typesetting. But we can no delay the whole form code to shipout
as the object reference and the size is often wanted on the current page.
so we need to allocate a box - but probably they won't be thousands xform
in a document so it shouldn't matter.
\cs_new_protected:Npn __pdf_backend_xform_new:nnnn #1 #2 #3 #4
% #1 name
% #2 attributes
% #3 resources
% #4 content, not necessarily a box!
{
\int_gincr:N \g__pdf_backend_object_int
\int_const:cn
{ c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
{ \g__pdf_backend_object_int }
\box_new:c { g__pdf_backend_xform_#1_box }
\hbox_gset:cn { g__pdf_backend_xform_#1_box }
{
\bool_set_true:N \1__pdf_backend_xform_bool
#4
}
\tl_const:ce
{ c__pdf_backend_xform_wd_ \tl_to_str:n {#1} _t1 }

25

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1160

1161

1162

1163

1164

1165

1166

1168

1169

{ \tex_the:D \box_wd:c { g__pdf_backend_xform_#1_box } }
\tl_const:ce

{ c__pdf_backend_xform_ht_ \tl_to_str:n {#1} _tl1 }

{ \tex_the:D \box_ht:c { g__pdf_backend_xform_#1_box } }
\tl_const:ce

{ c__pdf_backend_xform_dp_ \tl_to_str:n {#1} _tl1 }

{ \tex_the:D \box_dp:c { g__pdf_backend_xform_#1_box } }
\box_set_dp:cn { g__pdf_backend_xform_#1_box } { \c_zero_dim }
\box_set_ht:cn { g__pdf_backend_xform_#1_box } { \c_zero_dim }
\box_set_wd:cn { g__pdf_backend_xform_#1_box } { \c_zero_dim }
\hook_gput_next_code:nn {shipout/background}

{
\mode_leave_vertical: %needed, the xform disappears without it.
__pdf_backend:e
{
bxobj ~ __pdf_backend_xform_ref:n { #1 }
\c_space_tl width ~ \pdfxform_wd:n { #1 }
\c_space_tl height ~ \pdfxform_ht:n { #1 }
\c_space_tl depth ~ \pdfxform_dp:n { #1 }
}
\box_use_drop:c { g__pdf_backend_xform_#1_box }
__pdf_backend:e {put ~ Qresources ~<<#3>> }
__pdf_backend:e
{
put~ Q@resources ~
<<
/ExtGState~ \pdf_object_ref:n { __pdf/Page/Resources/ExtGState }
>>
}
__pdf_backend:e
{
put~ Q@resources ~
<<
/Pattern~ \pdf_object_ref:n { __pdf/Page/Resources/Pattern }
>>
}
__pdf_backend:e
{
put~ Q@resources ~
<<
/Shading~ \pdf_object_ref:n { __pdf/Page/Resources/Shading }
>>
}
__pdf_backend:e
{
put~ Q@resources ~
<<
/ColorSpace~
\pdf_object_ref:n { __pdf/Page/Resources/ColorSpace }
>>
}
__pdf_backend:e {exobj ~<<#2>>}
}

26

1185 \cs_new:Npn __pdf_backend_xform_ref:n #1

1186 {

1187 @pdf.xform \int_use:c { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
1188 }

1189

1190 \cs_new_protected:Npn __pdf_backend_xform_use:n #1

1191 {

1102 \hbox_set:Nn \1__pdf_backend_tmpa_box

1193 {

1104 __pdf_backend:e

1195 {

1196 uxobj~ __pdf_backend_xform_ref:n { #1 }

1197 }

1198 }

1199 \box_set_wd:Nn \1__pdf_backend_tmpa_box { \pdfxform wd:n { #1 } }
1200 \box_set_ht:Nn \1__pdf_backend_tmpa_box { \pdfxform_ht:n { #1 } }
1201 \box_set_dp:Nn \1__pdf_backend_tmpa_box { \pdfxform_dp:n { #1 } }
1202 \box_use_drop:N \1__pdf_backend_tmpa_box

1203 }

10 (/dvipdfmx | xdvipdfmx)

1205 (kdvisvgm)

1206 % unclear what it should do!!

1207 \cs_new_protected:Npn __pdf_backend_xform_new:nnnn #1 #2 #3 #4 {}

1206 \cs_new_protected:Npn __pdf_backend_xform_use:n #1 {}

1200 \cs_new:Npn __pdf_backend_xform_ref:n {}

1210 </dViSng>

The xform code for dvips is based on code from the attachfile2 package (in atfi-dvips),
along with some ideas from pdfbase and has been corrected with the help of Alexander
Grahn. Details like clipping and landscape will probably be corrected in the future. We
need some temporary variables to store dimensions

211 (xdvips)

112 \tl_new:N \1__pdf_backend_xform_tmpwd_tl

1213 \tl_new:N \1__pdf_backend_xform_tmpdp_tl

1214 \t1l_new:N \1__pdf_backend_xform_tmpht_tl

1215 \cs_new_protected:Npn__pdf_backend_xform_new:nnnn #1 #2 #3 #4 J, #1 name, #2 attribute, #4
1216 {

1217 \int_gincr:N \g__pdf_backend_object_int

1218 \int_const:cn

1219 { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
1220 { \g__pdf_backend_object_int }

1221

1222 \hbox_set:Nn \1__pdf_backend_tmpa_box

1223 {

1224 \bool_set_true:N \1__pdf_backend_xform_bool

1225 \prop_gclear:c {__kernel_pdfdict_name:n { g__pdf_Core/Xform/Resources/Properties }}
1226 #4

1227 }

1228 Yistore the dimensions

1229 \tl_const:ce

1230 { c__pdf_backend_xform_wd_ \tl_to_str:n {#1} _tl }

27

1231

1232

1233

1234

1235

1236

1237

1238

1239

1262

1263

1264

1265

1266

1267

1268

1269

{
\tl
{

{
\tl
{

{
%sto
\tl
{

}
\tl
{

}
\tl
{

}
% m
%\b
\hb
{

\tex_the:D \box_wd:N \1__pdf_backend_tmpa_box }

_const:ce

c__pdf_backend_xform_ht_ \tl_to_str:n {#1} _tl }

\tex_the:D \box_ht:N \1__pdf_backend_tmpa_box }

_const:ce

c__pdf_backend_xform_dp_ \tl_to_str:n {#1} _tl }

\tex_the:D \box_dp:N \1__pdf_backend_tmpa_box }
re content dimensions in DPI units (Dots) (code from issue 25)
_set:Ne\l__pdf_backend_xform_tmpwd_tl

\dim_to_decimal_in_sp:n{ \box_wd:N \1__pdf_backend_tmpa_box 1}~
65536~div~72.27~div~DVImag~mul~Resolution~mul~

_set:Ne\l__pdf_backend_xform_tmpht_tl

\dim_to_decimal_in_sp:n{ \box_ht:N \1__pdf_backend_tmpa_box 1}~
65536~div~72.27~div~DVImag~mul~VResolution~mul~

_set:Ne\l__pdf_backend_xform_tmpdp_tl

\dim_to_decimal_in_sp:n{ \box_dp:N \1__pdf_backend_tmpa_box 1}~
65536~div~72.27~div~DVImag~mul~VResolution~mul~

irror the box
ox_scale:Nnn \1__pdf_backend_tmpa_box {1} {-1}
ox_set:Nn\1__pdf_backend_tmpb_box

__kernel_backend_postscript:e
{
gsave~currentpoint~
initclip~ % restore default clipping path (page device/whole page)
clippath~pathbbox~newpath~pop~pop~
\tl_use:N\1__pdf_backend_xform_tmpdp_tl~add~translate~
mark-~
/_objdef~{ pdf.obj \int_use:N\g__pdf_backend_object_int }\c_space_tl~
/BBox [
O...
\tl_use:N\1__pdf_backend_xform_tmpht_tl~
\tl_use:N\1__pdf_backend_xform_tmpwd_tl~
\tl_use:N\1__pdf_backend_xform_tmpdp_tl~
neg
]
\str_if_eq:eeF{#1}{}
{
product~(Distiller) ~search~{pop~pop~pop~#2}{pop}ifelse~
}
/BP~pdfmark~1~-1~scale~neg~exch~neg~exch~translate
}
\box_use_drop:N\1__pdf_backend_tmpa_box
__kernel_backend_postscript:n
{
mark ~ /EP~pdfmark ~ grestore
}
\str_if_eq:eeF{#1}{}

28

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1302

1303

1305

1306

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1328

1329

1330

1331

1332

1333

1335

1336

1337

1338

{
__kernel_backend_postscript:e
{
product~(Ghostscript) ~search~
{
pop~pop-~pop~
mark~
{ pdf.obj \int_use:c{c__pdf_backend_xform_ \tl_to_str:n {#1} _int} }
~<<#2>>~/PUT~pdfmark
Hpoptifelse

}
\box_set_dp:Nn \1__pdf_backend_tmpb_box { \c_zero_dim }
\box_set_ht:Nn \1__pdf_backend_tmpb_box { \c_zero_dim }
\box_set_wd:Nn \1__pdf_backend_tmpb_box { \c_zero_dim }
\hook_gput_code:nnn {begindocument/end}{pdfxform}

{

\mode_leave_vertical:

\box_use:N\1__pdf_backend_tmpb_box

¥

\cs_new_protected:Npn __pdf_backend_xform_use:n #1

{
\hbox_set:Nn \1__pdf_backend_tmpa_box
{
__kernel_backend_postscript:e
{
gsave~currentpoint~translate~l~-1~scale~
mark~{ pdf.obj \int_use:c{c__pdf_backend_xform_ \tl_to_str:n {#1} _int }}~
/SP~pdfmark ~ grestore
}
}
\box_set_wd:Nn \1__pdf_backend_tmpa_box { \pdfxform wd:n { #1 } }
\box_set_ht:Nn \1__pdf_backend_tmpa_box { \pdfxform_ht:n { #1 } }
\box_set_dp:Nn \1__pdf_backend_tmpa_box { \pdfxform_dp:n { #1 } }
\box_use_drop:N \1__pdf_backend_tmpa_box
}
»5 \cs_new:Npn __pdf_backend_xform_ref:n #1
{
{ pdf.obj \int_use:c{c__pdf_backend_xform_ \tl_to_str:n {#1} _int} }
}
(/dvips)
(+drivers)
%h all
\prg_new_conditional:Npnn __pdf_backend_xform_if_exist:n #1 { p , T , F , TF }
{
\int_if_exist:cTF { c__pdf_backend_xform_ \tl_to_str:n {#1} _int }
{ \prg_return_true: }
{ \prg_return_false:}
}

29

1330 \prg_new_eq_conditional:NNn \pdfxform_if_exist:n__pdf_backend_xform_if_exist:n
1340 {TF,T,F,p}
131 (/drivers)

(End of definition for __pdf_backend_xform_new:nnnn, __pdf_backend_xform_use:n, and __pdf_-
backend_xform_ref:n.)

1.11 Structure Destinations

Standard destinations consist of a reference to a page in the pdf and instructions how to
display it—typically they will put a specific location in the left top corner of the viewer
and so give the impression that a link jumped to the word in this place. But in reality
they are not connected to the content.

Starting with pdf 2.0 destinations can in a tagged PDF also point to a structure,
to a /StructElem object. GoTo links can then additionally to the /D key pointing to a
page destination also point to such a structure destination with an /SD key. Programs
that e.g. convert such a PDF to html can then create better links. (According to the
reference, PDF-viewer should prefer the structure destination over the page destination,
but as far as it is known this isn’t done yet.)

Currently structure destinations and GoTo links making use of it could natively only
be created with the dvipdfmx backend. With pdftex and lualatex it was only possible
to create a restricted type which used only the “Fit” mode. Starting with TEXlive 2022
(earlier in miktex) both engine will knew new keywords which allow to create structure
destination easily.

The following backend code prepares the use of structure destinations. The general
idea is that if structure destinations are used, they should be used always. So we define
alternative commands which can be activated by mapping them to the standard backend
commands.

The needed code differ depending on if structure objects use standard or indexed
object names. At the end we will probably always use indexed objects, but for now we
offer both options.

\1 pdf current structure destination t1 This command holds the name of the structure object to use in the following commands
which creates a destination. The code which activates structure destinations must also
ensure that it has a sensible, expandable content. tagpdf for example will define it as

\tl_set:Nn \1_pdf_current_structure_destination_tl { __tag/struct/\g__tag_struct_stack
or if indexed structure object names are used
\tl_set:Nn \1_pdf_current_structure_destination_tl { {__tag/struct}{\g__tag_struct_sta

1342 (xdrivers)
133 \tl_new:N \1_pdf_current_structure_destination_tl
1344 </d rivers)

(End of definition for \1_pdf_current_structure_destination_tl.)
We will define alternatives for three backend commands:

__pdf_backend_destination:nn -> __pdf_backend_structure_destination:nn
__pdf_backend_destination:nnnn -> __pdf_backend_structure_destination:nnnn
__pdfannot_backend_link_begin_goto:nnw -> __pdf_backend_link_begin_structure_goto:n
__pdf_backend_destination:nn -> __pdf_backend_indexed_structure_destination:nn
__pdf_backend_destination:nnnn -> __pdf_backend_indexed_structure_destination:nnnn
__pdfannot_backend_link_begin_goto:nnw -> __pdf_backend_indexed_link_begin_structur

30

\pdf activate structure destination:
pdf activate_indexed structure destination: ...
1346
1347
1348
1349

1350

Activating means mapping them onto the original commands. Be aware that not all
engines and compilation routes support structure destinations, for them the command
will be a no-op.

(xdrivers)
\cs_new_protected:Npn \pdf_activate_structure_destination:
{
\cs_gset_eq:NN __pdf_backend_destination:nn __pdf_backend_structure_destination:n
\cs_gset_eq:NN __pdf_backend_destination:nnnn __pdf_backend_structure_destination:mn
\cs_gset_eq:NN __pdfannot_backend_link_begin_goto:nnw __pdfannot_backend_link_begin_st
}
> \cs_new_protected:Npn \pdf_activate_indexed_structure_destination:
{
\cs_gset_eq:NN __pdf_backend_destination:nn __pdf_backend_indexed_structure_desti
\cs_gset_eq:NN __pdf_backend_destination:nnnn __pdf_backend_indexed_structure_desti
\cs_gset_eq:NN __pdfannot_backend_link_begin_goto:nnw __pdfannot_backend_link_begin_st
}
s (/drivers)

(End of definition for \pdf_activate_structure_destination: and \pdf_activate_indexed_structure_-
destination:.)

Now the driver dependent parts. By default the new commands are simply copies
of the original commands. We adapt them then for the engines and engine version which
provide support for structure destinations.

1359 <*drivers)

1360 \cs_set_eq:NN __pdf_backend_structure_destination:nn __pdf_backend_destination:nn
1361 \cs_set_eq:NN __pdf_backend_structure_destination:nnnn __pdf_backend_destination:nnnn
1362 \cs_set_eq:NN __pdfannot_backend_link_begin_structure_goto:nnw __pdfannot_backend_link_be
1363 \cs_set_eq:NN __pdf_backend_indexed_structure_destination:nn __pdf_backend_destinati
1364 \cs_set_eq:NN __pdf_backend_indexed_structure_destination:nnnn __pdf_backend_destinati
1365 </drivers)

\ pdf backend structure destination:nn These commands are the backend commands to create a destination. which create also
__pdf backend structure destination:nnim & structure destination. At first xetex/dvipdfmx. The structure destination is an array,
annot_backend link begin structure goto:mny 80 we use obj for it so that we can reference it:

1366 <>kxdvipdfmx ‘ dvipdfmx)
\cs_set_protected:Npn __pdf_backend_structure_destination:nn #1#2

1367

1368

1369

1370

1379

1380

1381

1382

{

__pdf_backend:e

{

dest ~ (\exp_not:n {#1})

[

@thispage
\str_case:nnF {#2}

{

P e S S

xyz } { /XYZ ~ @xpos ~ @ypos ~ null }
fit } { /Fit }

fitb } { /FitB }

fitbh } { /FitBH }

fitbv } { /FitBV ~ @xpos }

fith } { /FitH ~ @ypos 1}

fitv } { /FitV ~ @xpos 1}

31

1383 { fitr } { /Fit }

1384 }

1385 { /XYZ ~ @xpos ~ @ypos ~ \fp_eval:n { (#2) / 100 } }
1386]

1387 }

We test if the structure object exist. The object of the structure destination gets the name
Qpdf .Sdest . (destname), where (destname) is the name of the standard destination so
that we can reference it in the GoTo links.

1388 \exp_args:Ne \pdf_object_if_exist:nT { \1_pdf_current_structure_destination_tl }
1389 {

1390 __pdf_backend:e

1391 {

1392 obj ~ @pdf.SDest.\exp_not:n{#1}

1393 L

1304 \exp_args:Ne \pdf_object_ref:n { \1_pdf_current_structure_destination_tl }
1305 \str_case:nnF {#2}

1396 {

1307 {xyz} { /XYZ ~ @xpos ~ @ypos ~ null }

1398 { fit } { /Fit }

1399 { fitb } { /FitB }

1400 { fitbh } { /FitBH }

1401 { fitbv } { /FitBV ~ Q@xpos }

1402 { fith } { /FitH ~ Qypos }

1403 { fitv } { /Fitv ~ @xpos ¥

1404 { fitr } { /Fit }

1405 }

1406 { /XYZ ~ @xpos ~ Qypos ~ \fp_eval:n { (#2) / 100 } }
1407]

1408 }

1409 }

1410 }

The second destination command is for the boxed destination. Here we need to define
an new auxiliary command:

111 \cs_new_protected:Npn __pdf_backend_structure_destination_aux:nnnn #1#2#3#4

1412 {

1413 \vbox_to_zero:n

1414 {

1415 __kernel_kern:n {#4}

1416 \hbox:n

1417 {

1418 __pdf_backend:n { obj ~ @pdf_ #2 _1llx ~ Q@xpos }
1419 __pdf_backend:n { obj ~ @pdf_ #2 _1lly ~ @ypos }
1420 }

1421 \tex_vss:D

1422 }

1423 __kernel_kern:n {#1}

1424 \vbox_to_zero:n

1425 {

1426 __kernel_kern:n { -#3 }

1427 \hbox:n

1428 {

1429 __pdf_backend:n

1430 {

32

1431 dest ~ (#2)

1432 [

1433 Q@thispage

1434 /FitR ~

1435 @pdf_ #2 _1lx ~ @pdf_ #2 _1ly ~
1436 @xpos ~ Qypos

1437]

1438 }
Here we add the structure destination to the same box

1439 \exp_args:Ne \pdf_object_if_exist:nT { \1_pdf_current_structure_destination_tl }
1440 {

1441 __pdf_backend:e

1442 {

1443 obj ~ @pdf.SDest.\exp_not:n{#2}

1444 [

1445 \exp_args:Ne \pdf_object_ref:n { \1_pdf_current_structure_destination_
1446 /FitR ~

1447 opdf_ #2 _11x ~ opdf_ #2 _1lly -

1448 @xpos ~ Qypos

1449 1

1450 }

1451 }

1452 }

1453 \tex_vss:D

1454 }

1455 __kernel _kern:n { -#1 }

1456 }

And now we redefine the destination command:

us7 \cs_set_protected:Npn __pdf_backend_structure_destination:nnnn #1#2#3#4

1458 {

1459 \exp_args:Ne __pdf_backend_structure_destination_aux:nnnn

1460 { \dim_eval:n {#2} } {#1} {#3} {#4}

1461 }

At last the goto link.

ue> \cs_set_protected:Npn __pdfannot_backend_link_begin_structure_goto:nnw #1#2
1463 {

1464 __pdfannot_backend_link_begin:n { #1 /Subtype /Link /A << /S /GoTo /D (#2) /SD~@pdf.S
1465 }

e {/xdvipdfmx | dvipdfmx)

Now pdftex. We only redefine for version 1.40 revision 24 or later.

1467 (*pdftex)

ues \bool_lazy_and:nnT

o { \int_compare_p:nNn {\tex_pdftexversion:D } > {139} }

wo { \int_compare_p:nNn {\tex_pdftexrevision:D } > {23} }

1471 {

1472 \cs_set_protected:Npn __pdf_backend_structure_destination:nn #1#2
1473 {

1474 \tex_pdfdest :D

1475 name {#1}

1476 \str_case:nnF {#2}

1477 {

1478 { Xyz } { Xyz }

33

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1519

1520

}

{ fit } { fit }
{ fitb } { fitb }
{ fitbh } { fitbh }
{ fitbv } { fitbv }
{ fith } { fith }
{ fitv } { fitv }
{ fitr } { fitr }

{ xyz ~ zoom \fp_eval:n { #2 * 10 } }

\scan_stop:

\exp_args:Ne \pdf_object_if_exist:nT { \1_pdf_current_structure_destination_tl }

{
\tex_pdfdest:D
struct~
\int_use:c
{ c__pdf_object_ \exp_args:Ne \tl_to_str:n {\1_pdf_current_structure_destin
name {#1}
\str_case:nnF {#2}
{
{xyz} {xyz}l
{fit } { fit }
{ fitb } { fitb }
{ fitbh } { fitbh }
{ fitbv } { fitbv }
{ fith } { fith }
{ fitv > { fitv }
{ fitr } { fitr }
}
{ xyz ~ zoom \fp_eval:n { #2 * 10 } }
\scan_stop:
}
}
\cs_set_protected:Npn __pdf_backend_structure_destination:nnnn #1#2#3#4
{
\tex_pdfdest:D
name {#1}
fitr ~

width \dim_eval:n {#2} ~

height \dim_eval:n {#3} ~

depth \dim_eval:n {#4} \scan_stop:

\exp_args:Ne \pdf_object_if_exist:nT { \1_pdf_current_structure_destination_tl }

\exp_args:Ne \tl_to_str:n {\1_pdf_current_structure_destinat

{
\tex_pdfdest:D
struct~
\int_use:c
{ c__pdf_object_
name {#1}
fitr ~
width \dim_eval:n {#2} ~
height \dim_eval:n {#3} -~
depth \dim_eval:n {#4} \scan_stop:
}

}

\cs_set_protected:Npn __pdfannot_backend_link_begin_structure_goto:nnw #1#2

34

1533 {

1534 __pdfannot_backend_link_begin:nnnw {#1} { goto~struct~name~{#2}~name } {#2}
1535 }

1536 }

1537 (/pdftex)

luatex is quite similar to pdftex. Mostly the test for the version is different

1538 <*Iuatex>
1530 \int_compare:nNnT {\directlua{tex.print(status.list() ["development_id"])} } > {7468}
1540 {

1541 \cs_set_protected:Npn __pdf_backend_structure_destination:nn #1#2
1542 {

1543 \tex_pdfextension:D dest

1544 name {#1}

1545 \str_case:nnF {#2}

1546 {

1547 { xyz } { xyz }

1548 { fit } { fit }

1549 { fitb } { fitb }

155¢ { fitbh } { fitbh }

1551 { fitbv } { fitbv }

1552 { fith } { fith }

1553 { fitv } { fitv }

1554 { fitr } { fitr }

1555 }

1556 { xyz ~ zoom \fp_eval:n { #2 * 10 } }

1557 \scan_stop:

1558 \exp_args:Ne \pdf_object_if_exist:nT { \1_pdf_current_structure_destination_t1l }
1559 {

1560 \tex_pdfextension:D dest

1561 struct~

1562 \int_use :C

1563 { c__pdf_object_ \exp_args:Ne \tl_to_str:n {\1_pdf_current_structure_destir
1564 name {#1}

1565 \str_case:nnF {#2}

1566 {

1567 {xyz} A xyz}

1568 { fit } { fit }

1560 { fitb } { fitb }

1570 { fitbh } { fitbh }

1571 { fitbv } { fitbv }

1572 { fith } { fith }

1573 { fitv } { fitv }

1574 { fitr ¥} { fitr }

1575 }

1576 { xyz ~ zoom \fp_eval:n { #2 % 10 } }
1577 \scan_stop:

1578 }

1579 }

1580 \cs_set_protected:Npn __pdf_backend_structure_destination:nnnn #1#2#3#4
1581 {

1582 \tex_pdfextension:D dest

1583 name {#1}

1584 fitr ~

1585 width \dim_eval:n {#2} ~

35

df backend indexed structure destination:nn

_backend_indexed structure destination:nnnn

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

height \dim_eval:n {#3} ~
depth \dim_eval:n {#4} \scan_stop:
\exp_args:Ne \pdf_object_if_exist:nT { \1_pdf_current_structure_destination_tl }

{

\tex_pdfextension:D dest
struct~
\int_use:c
{ c__pdf_object_ \exp_args:Ne \tl_to_str:n {\1_pdf_current_structure_destinat
name {#1}
fitr ~
width \dim_eval:n {#2} ~
height \dim_eval:n {#3} ~
depth \dim_eval:n {#4} \scan_stop:

\cs_set_protected:Npn __pdfannot_backend_link_begin_structure_goto:nnw #1#2

}
{
}
}
(/luatex)

__pdfannot_backend_link_begin:nnnw {#1} { goto~struct~name~{#2}~name } {#2}

(End of definition for __pdf_backend_structure_destination:nn, __pdf_backend_structure_destination:nnnn,
and __pdfannot_backend_link_begin_structure_goto:nnw.)

This are the indexed variants of the commands to create a destination and a structure
destination. At first xetex/dvipdfmx. The structure destination is an array, so we use
obj for it so that we can reference it:

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

(#xdvipdfmx | dvipdfmx)
\cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nn #1#2

{

__pdf_backend:e

{

}

dest ~ (\exp_not:n {#1})

[

]

@thispage
\str_case:nnF {#2}
{
{xyz} { /XYZ ~ @xpos ~ @ypos ~ null }
{ fit » { /Fit }
{ fitb } { /FitB }
{ fitbh } { /FitBH }
{ fitbv } { /FitBV ~ @xpos }
{ fith } { /FitH ~ Qypos }
{ fitv } { /FitV ~ @xpos }
{ fitr } { /Fit }
}
{ /XYZ ~ @xpos ~ @ypos ~ \fp_eval:n { (#2) / 100 } }

We do not test anymore if the structure object exist. The object of the structure des-
tination gets the name @pdf.Sdest.(destname), where (destname) is the name of the
standard destination so that we can reference it in the GoTo links.

36

1629 __pdf_backend:e

1630 {

1631 obj ~ @pdf.SDest.\exp_not:n{#1}

1632 [

1633 \exp_after:wN \pdf_object_ref_indexed:nn \1_pdf_current_structure_destination_t
1634 \str_case:nnF {#2}

1635 {

1636 {xyz } { /XYZ ~ @xpos ~ @ypos ~ null }

1637 { fit } { /Fit }

1638 { fitb } { /FitB }

1639 { fitbh } { /FitBH }

1640 { fitbv } { /FitBV ~ Q@xpos }

1641 { fith } { /FitH ~ Q@ypos ¥

1642 { fitv } { /Fitv ~ @xpos T

1643 { fitr ¥ { /Fit }

1644 ¥

1645 { /XYZ ~ @xpos ~ @ypos ~ \fp_eval:n { (#2) / 100 } }
1646]

1647 }

1648 }

The second destination command is for the boxed destination. Here we need to
define an new auxiliary command:

1620 \cs_new_protected:Npn __pdf_backend_indexed_structure_destination_aux:nnnn #1#2#3#4

1650 {

1651 \vbox_to_zero:n

1652 {

1653 __kernel _kern:n {#4}

1654 \hbox:n

1655 {

1656 __pdf_backend:n { obj ~ @pdf_ #2 _1lx ~ @xpos }
1657 __pdf_backend:n { obj ~ @pdf_ #2 _lly ~ Qypos }
1658 ¥

1659 \tex_vss:D

1660 }

1661 __kernel_kern:n {#1}

1662 \vbox_to_zero:n

1663 {

1664 __kernel_kern:n { -#3 }

1665 \hbox:n

1666 {

1667 __pdf_backend:n

1668 {

1669 dest ~ (#2)

1670 [

1671 Q@thispage

1672 /FitR ~

1673 Qpdf_ #2 _11x ~ Qpdf_ #2 _1lly ~
1674 @xpos ~ Qypos

1675]

1676 }

Here we add the structure destination to the same box

1677 __pdf_backend:e

1678 {

37

1679 obj ~ @pdf.SDest.\exp_not:n{#2}

1680 [

1681 \exp_after:wN \pdf_object_ref_indexed:nn \1l_pdf_current_structure_destir
1682 /FitR ~

1683 epdf_ #2 _11x ~ Qpdf_ #2 _lly -
1684 @xpos ~ Qypos

1685]

1686 }

1687 }

1688 \tex_vss:D

1689 }

1690 __kernel _kern:n { -#1 }

1691 ¥

And now we redefine the destination command:

1602 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nnnn #1#2#3#4
1693 {
1604 \exp_args:Ne __pdf_backend_indexed_structure_destination_aux:nnnn
1695 { \dim_eval:n {#2} } {#1} {#3} {#4}
1696 }
107 (/xdvipdfmx | dvipdfmx)
Now pdftex. We only redefine for version 1.40 revision 24 or later.
1698 (*pdftex)
1600 \bool_lazy_and:nnT
170 { \int_compare_p:nNn {\tex_pdftexversion:D } > {139} }
1700 { \int_compare_p:nNn {\tex_pdftexrevision:D } > {23} }

1702 {

1703 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nn #1#2
1704 {

1705 \tex_pdfdest :D

1706 name {#1}

1707 \str_case:nnF {#2}

1708 {

1709 {xyz} {zxyz}

1710 { fit } { fit }

1711 { fitb } { fitb }

1712 { fitbh } { fitbh }

1713 { fitbv } { fitbv }

1714 { fith } { fith }

1715 { fitv } A{ fitv }

1716 { fitr } { fitr }

1717 }

1718 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1719 \scan_stop:

1720 \tex_pdfdest:D

1721 struct~

1722 \exp_after:wN __kernel_pdf_object_id_indexed:nn \1_pdf_current_structure_des
1723 name {#1}

1724 \str_case:nnF {#2}

1725 {

1726 {xyz} {xyz}l

1727 { fit } { fit }

1728 { fitb } { fitb }

1729 { fitbh } { fitbh }

38

1730 { fitbv } { fitbv }

1731 { fith } { fith }

1732 { fitv } { fitv }

1733 { fitr } { fitr }

1734 }

1735 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1736 \scan_stop:

1737 }

1738 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nnnn #1#2#3#4
1739 {

1740 \tex_pdfdest:D

1741 name {#1}

1742 fitr ~

1743 width \dim_eval:n {#2} ~

1744 height \dim_eval:n {#3} ~

1745 depth \dim_eval:n {#4} \scan_stop:

1746 \tex_pdfdest:D

1747 struct~

1748 \exp_after:wN __kernel_pdf_object_id_indexed:nn \1_pdf_current_structure_destinati
1749 name {#1}

1750 fitr ~

1751 width \dim_eval:n {#2} ~

1752 height \dim_eval:n {#3} ~

1753 depth \dim_eval:n {#4} \scan_stop:

1754 }

1755 }

1756 (/pdftex)
luatex is quite similar to pdftex. Mostly the test for the version is different

57 (xluatex)
1755 \int_compare:nNnT {\directlua{tex.print(status.list() ["development_id"])} } > {7468}
1759 {

1760 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nn #1#2
1761 {

1762 \tex_pdfextension:D dest

1763 name {#1}

1764 \str_case:nnF {#2}

1765 {

1766 {xyz} {zxyz}

1767 { fit } { fit }

1768 { fitb } { fitb }

1769 { fitbh } { fitbh }

1770 { fitbv } { fitbv }

1771 { fith } { fith }

1772 { fitv } { fitv }

1773 { fitr } { fitr }

1774 }

1775 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
1776 \scan_stop:

1777 \tex_pdfextension:D dest

1778 struct~

1779 \exp_after:wN __kernel_pdf_object_id_indexed:nn \1_pdf_current_structure_desti
1780 name {#1}

1781 \str_case:nnF {#2}

1782 {

39

1783 { Xyz } { Xyz }

1784 { fit } { fit }

1785 { fitb } { fitb }

1786 { fitbh } { fitbh }

1787 { fitbv } { fitbv }

1788 { fith } { fith }

1789 { fitv } { fitv }

1790 { fitr } { fitr }

1791 }

1792 { xyz ~ zoom \fp_eval:n { #2 * 10 } }

1793 \scan_stop:

1794 }

1795 \cs_set_protected:Npn __pdf_backend_indexed_structure_destination:nnnn #1#2#3#4
1796 {

1797 \tex_pdfextension:D dest

1798 name {#1}

1799 fitr ~

1800 width \dim_eval:n {#2} ~

1801 height \dim_eval:n {#3} ~

1802 depth \dim_eval:n {#4} \scan_stop:

1803 \tex_pdfextension:D dest

1804 struct~

1805 \exp_after:wN __kernel_pdf_object_id_indexed:nn \1_pdf_current_structure_destinati
1806 name {#1}

1807 fitr ~

1808 width \dim_eval:n {#2} ~

1800 height \dim_eval:n {#3} ~

1810 depth \dim_eval:n {#4} \scan_stop:

1811 }

1812 \cs_set_protected:Npn __pdfannot_backend_link_begin_structure_goto:nnw #1#2
1813 {

1814 __pdfannot_backend_link_begin:nnnw {#1} { goto~struct~name~{#2}~name } {#2}
1815 }

1816 T

1817 (/Iuatex)

(End of definition for __pdf_backend_indexed_structure_destination:nn and __pdf_backend_-
indexed_structure_destination:nnnn)

1.12 Settings for regression tests

When doing pdf based regression tests some meta data in the pdf should have fixed values
to get identical pdf’s. We define here the backend dependent part. The main command
is then in 13pdfmeta

1818 (*drivers)

1519 \cs_new_protected:Npn __pdf_backend_set_regression_data:

1820 {

1821 \sys_gset_rand_seed:n{1000}

1822 \pdfmanagement_add:nnn{Info}{Creator}{(TeX)}

1823 </drivers)

1824 (xdvips)

1825 \AddToHook{begindocument}{\pdfmanagement_add:nnn{Info}{Producer}{(pdfTeX+dvips)}}
1826 __kernel_backend_literal:e{!~<</DocumentUUID~(DocumentUUID)>>~setpagedevice}

1827 __kernel_backend_literal:e{!~<</InstanceUUID~(InstanceUUID)>>~setpagedevice}

40

1828 \pdfmanagement_add:nne{Info}{CreationDate}{(\c_sys_timestamp_str)}
1820 \pdfmanagement_add:nne{Info}{ModDate}{(\c_sys_timestamp_str)}

1830 (/dvips)

1831 (*dvipdfmx)

1832 \pdfmanagement_add:nnn{Info}{Producer}{(dvipdfmx)}
1833 __kernel_backend_literal:e

1834 {pdf:trailerid [~

1835 <00112233445566778899aabbccddeeff>~

1836 <00112233445566778899aabbccddeeff>~

1837]}

1838 </dvipdfmx>

1830 (*xdvipdfmx)

1840 \pdfmanagement_add:nnn{Info}{Producer}{(xetex)}
1841 __kernel_backend_literal:e

1842 {pdf:trailerid [~

1843 <00112233445566778899aabbccddeeff>~

1844 <00112233445566778899aabbccddeeff>~

1845 13}

1846 (/xdvipdfmx)

1847 (*pdftex)

1848 \pdfmanagement_add:nnn{Info}{Producer}{(pdfTeX)}
1849 \tex_pdfsuppressptexinfo:D 7 \scan_stop:

1850 \pdftrailerid{2350CADO5F8A7AFOAA4058486855344F}
1851 (/pdftex)

1852 (*Iuatex)

1853 \pdfmanagement_add:nnn{Info}{Producer}{(LuaTeX)}
1854 \tex_pdfvariable:D suppressoptionalinfo 7\relax
1855 \tex_pdfvariable:D trailerid

1856 {[~

1857 <2350CADO5F8A7AF0AA4058486855344F>~

1858 <2350CADO5F8A7AFOAA4058486855344F>~

1859 13}

1860 (/luatex)
Embedded files should also have a fix date.

1861 <*d rivers)

1862 \pdfdict_put:nne {1_pdffile/Params} {ModDate}{(\c_sys_timestamp_str)}

1863 \AddToDocumentProperties [hyperref]{pdfinstanceid}{uuid:0a57c455-157a-4141-
8c19-6237d832£c80}

1864 \AddToDocumentProperties [hyperref]{pdfproducer}{\c_sys_engine_exec_str-NN.NN.NN}

1865 }

1866 </d rivers)

1.13 Uncompressed metadata object stream

The xmp metadata should be written “uncompressed” to pdf. It is not quite clear what
exactly that means. Probably it only means that there should be no /Filter key in the
stream, but packages like pdfx and hyperref try to suppress object compression too, so we
add support for it too. With luatex this is possible by using the uncompressed key word.
With pdftex one can change locally the compresslevel. (x)dvipdfmx does it automatically
and doesn’t need some special command. No solution is known for the dvips route. We
need it only once, so we make it special and probably no public interface is needed. It
writes the __pdfmeta/xmp object which should be declared before.

41

luatex has of now (2025-11-12) a bug: using the uncompressed key disables ob-
ject compression for all following objects. We therefor delay the writing into the
enddocument/end hook after the tagpdf code.

1867 (*luatex)
1565 \cs_new_protected:Npn __pdf_backend_metadata_stream:n #1

1869 {

1870 \AddToHook{enddocument/end}

1871 {

1872 \tex_immediate:D \tex_pdfextension:D obj ~

1873 useobjnum ~ \int_eval:n{__pdf_object_retrieve:n {__pdfmeta/xmpl}}~uncompressed~
1874 __pdf_backend_object_write:nn {stream}

1875 {{/Type~/Metadata~/Subtype~/XML}{#1}}

1876 }

1877 }

1878 (/Iuatex)
1879 (*pdftex)
1550 \cs_new_protected:Npn __pdf_backend_metadata_stream:n #1

1881 {

1882 \group_begin:

1883 \tex_pdfcompresslevel:D O \scan_stop:

1884 \tex_immediate:D \tex_pdfobj:D useobjnum ~ \int_eval:n{__pdf_object_retrieve:n
1885 {__pdfmeta/xmp}}~

1886 __pdf_backend_object_write:nn {stream} {{/Type~/Metadata~/Subtype~/XML}{#1}}
1887 \group_end:

1888 ¥

1889 </pdftex)

1800 (xxdvipdfmx | dvipdfmx | dvips | dvisvgm)

101 \cs_new_protected:Npn __pdf_backend_metadata_stream:n #1

1892 {

1803 \pdf_object_write:nnn{__pdfmeta/xmp} {stream}{{/Type~/Metadata~/Subtype~/XML}{#1}}
1894 }

1505 (/xdvipdfmx | dvipdfmx | dvips | dvisvgm)

1.14 Suppressing deprecated PDF features

/ProcSet, /CharSet and the /Info dictionary are deprecated in PDF 2.0. For the pdf/A-
4 standard they must be suppressed. Not every engine is able to do this, but for pdfTeX
and luatex we define suitable backend command. /ProcSet is suppressed automatically
for pdf version 2.0 starting with in texlive 2023.

_pdf backend onit_charset:n The option to omit /Charset exists already for quite some time for the two engines.
1805 (*xdvipdfmx | dvipdfmx | dvips | dvisvgm)
107 \cs_new_protected:Npn __pdf_backend_omit_charset:n #1 {} %#1 number
1805 (/xdvipdfmx | dvipdfmx | dvips | dvisvgm)
1899 <>kpdfteX>
1000 \cs_new_protected:Npn __pdf_backend_omit_charset:n #1 %#1 number
1901 {
1002 \tex_pdfomitcharset:D = #1 \scan_stop:
1903 }
104 (/pdftex)
s (*luatex)
1006 \cs_new_protected:Npn __pdf_backend_omit_charset:n #1 %#1 number
1907 {

19

42

1008 \tex_pdfvariable:D omitcharset = #1 \scan_stop:
1909 }
w0 (/luatex)

(End of definition for __pdf_backend_omit_charset:n.)

__pdf_backend_omit_info:n The option to suppress the info dictionary will be available in texlive 2023.
w11 (sxdvipdfmx | dvipdfmx | dvips | dvisvgm)
1012 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 {} %#1 number
1013 (/xdvipdfmx | dvipdfmx | dvips | dvisvgm)
1914 (*pdftex)
1015 \bool_lazy_and:nnTF
116 { \int_compare_p:nNn {\tex_pdftexversion:D } > {139} }
1017 { \int_compare_p:nNn {\tex_pdftexrevision:D } > {24} }

1918 {

1019 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 %#1 number
1920 {

1021 \pdfomitinfodict = #1 \scan_stop:

1922 }

1923 }

1924 {

1925 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 {}/#1 number
1926

1927 ¥

1928 (/pdftex)
1920 (xluatex)
1030 \int_compare:nNnTF {\directlua{tex.print(status.list() ["development_id"]1)} } > {7560}

1931 {

1932 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 ’#1 number
1933 {

1034 \tex_pdfvariable:D omitinfodict = #1 \scan_stop:

1935 }

1936 }

1937 {

1938 \cs_new_protected:Npn __pdf_backend_omit_info:n #1 {} %#1 number
1939 }

w0 (/luatex)

(End of definition for __pdf_backend_omit_info:n.)
With luatex it is for some standards also necessary to suppress the CidSet entry in
the fonts (with xetex there seem to be no problem.

__pdf_backend_omit_cidset:n The option to omit /Charset exists already for quite some time for the two engines.
1041 (sxdvipdfmx | dvipdfmx | dvips | dvisvgm | pdftex)
1022 \cs_new_protected:Npn __pdf_backend_omit_cidset:n #1 {} %#1 number
1043 (/xdvipdfmx | dvipdfmx | dvips | dvisvgm | pdftex)
1944 (*Iuatex)
1025 \cs_new_protected:Npn __pdf_backend_omit_cidset:n #1 %#1 number

1946 {
1047 \tex_pdfvariable:D omitcidset = #1 \scan_stop:
1948 }

1949 (/Iuatex)

(End of definition for __pdf_backend_omit_cidset:n.)

43

1.15 lua code for lualatex

1950 <*Iua>
1051 1tx= 1tx or {}
1952 1tx. __pdf = ltx.__pdf or {}

1055 1tx.__pdf.Page = ltx.__pdf.Page or {}

1054 1tx.__pdf.Page.dflt = 1ltx.__pdf.Page.dflt or {}

1055 1tx.__pdf .Page.Resources = ltx.__pdf.Resources or {}
1056 1tx.__pdf.Page.Resources.Properties = ltx.__pdf.Page.Resources.Properties or {}
1057 1tx.__pdf .Page.Resources.List={"ExtGState","ColorSpace","Pattern","Shading"}
1055 1tx.__pdf.object = 1ltx.__pdf.object or {}

1959

1060 1tx.pdf= 1ltx.pdf or {} -- for "public" functions

1961

162 local __pdf = 1ltx.__pdf

1963 local pdf = pdf

1964

1065 local function __pdf_backend_Page_gput (name,value)
1066 __pdf.Page.dflt[name]=value

1067 end

1968

1060 local function __pdf_backend_Page_gremove (name)

70 __pdf.Page.dflt[name]=nil

1971 end

1972

1073 local function __pdf_backend_Page_gclear ()

w74 __pdf.Page.dflt={}

1975 end

1976

1077 local function __pdf_backend_ThisPage_gput (page,name,value)
w7z __pdf.Page[page] = __pdf.Pagel[page] or {}

1079 __pdf .Page[page] [name]=value

1050 end

1981

1082 local function __pdf_backend_ThisPage_gpush (page)
1083 local token=""

03¢ local t = {}

185 local tkeys= {}

106 for name,value in pairs(__pdf.Page.dflt) do

1087 t [name]=value

1088 end

wso if __pdf.Page[page] then

100 for name,value in pairs(__pdf.Pagel[page]) do

1001 t[name] = value

1992 end

1903 end

194 —— sort the table to get reliable test files.
1905 for name,value in pairs(t) do

1005 table.insert(tkeys,name)

1907 end

1903 table.sort (tkeys)

199 for _,name in ipairs(tkeys) do

2000 token = token .. "/"..name.." "..t[name]
2001 end

44

2002 return token

2003 end

2004

205 function 1ltx.__pdf.backend_ThisPage_gput (page,name,value) -- tex.count["g_shipout_readonly_
206 __pdf_backend_ThisPage_gput (page,name,value)

2007 end

2000 function ltx.__pdf.backend_ThisPage_gpush (page)
2010 pdf.setpageattributes(__pdf_backend_ThisPage_gpush (page))
2011 end

2013 function ltx.__pdf.backend_Page_gput (name,value)
2014 __pdf_backend_Page_gput (name,value)
2015 end

2017 function 1ltx.__pdf.backend_Page_gremove (name)
2015 __pdf_backend_Page_gremove (name)

2010 end

201 function ltx.__pdf.backend_Page_gclear ()

2022 __pdf_backend_Page_gclear ()

2023 end

2024

2025

2006 local Properties = ltx.__pdf.Page.Resources.Properties

2027 local ResourcelList= 1ltx.__pdf.Page.Resources.List

228 local function __pdf_backend_PageResources_gpush (page)
2020 local token=""

2030 1if Properties[page] then

2031 —— we sort the table, so that the pdf test works

2032 local t = {}

2033 for name,value in pairs (Properties[page]) do

2034 table.insert (t,name)

2035 end

203 table.sort (t)

2037 for _,name in ipairs(t) do

2038 token = token .. "/"..name.." ".. Properties[page] [namel

2039 end

2040 token = "/Properties <<"..token..">>"

2041 end

2002 for i,name in ipairs(ResourceList) do

2043 if 1tx.__pdf.Page.Resources[name] then

2044 token = token .. "/"..name.." "..ltx.pdf.object_ref("__pdf/Page/Resources/"..name)
2045 end

2046 end

2047 return token

2048 end

2049

2050 == the function is public, as I probably need it in tagpdf too ...

2051 function ltx.pdf.Page_Resources_Properties_gput (page,name,value) -- tex.count["g_shipout_re

2052 Properties[page] = Properties[page] or {}

2053 Properties[page] [name]=value

2054 pdf . setpageresources (__pdf_backend_PageResources_gpush (page))
2055 end

45

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

function ltx.pdf.Page_Resources_gpush(page)
pdf . setpageresources (__pdf_backend_PageResources_gpush (page))

end

function 1ltx.pdf.object_ref (objname)
if 1tx.__pdf.object[objname] then
local ref= ltx.__pdf.object[objname]
return ref

else
return
end

end

(/lua)

"false"

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
\AddToDocumentProperties . 1863, 1864
\AddToHook 1825, 1870
\AssignSocketPlug 937

bool commands:

\bool_if:NTF 676, 700, 756, 786

\bool_lazy_and:nnTF . 1468, 1699, 1915
\bool _new:N 516
\bool_set_true:N 948, 1030, 1123, 1224
box commands:
\box_dp:N . 961, 1042, 1134, 1237, 1251
\box_ht:N 958, 1039, 1131, 1234, 1246
\box_new:N 85, 86, 1120
\box_scale:Nnn 1255
\box_set_dp:Nn . 1135, 1201, 1298, 1322
\box_set_ht:Nn . 1136, 1200, 1299, 1321
\box_set_wd:Nn . 1137, 1199, 1300, 1320
\box_use:N 1304
\box_use_drop:N 1148, 1202, 1279, 1323
\box_wd:N 955, 1036, 1128, 1231, 1241
C
clist commands:
\clist_const:Nn 414
\clist_map_function:NN 861

\clist_map_inline:Nn 423, 457, 473, 656

cs commands:

\cs_generate_variant:Nn
28, 31, 32, 35, 36, 76, 77, 411

46

\cs_gset_eq:NN
638, 1348, 1349, 1350, 1354, 1355, 1356
\cs_if_exist:NTF 426, 920
\cs_new:Npn 71, 97, 103,
242, 837, 1014, 1096, 1185, 1209, 1325
\cs_new_protected:Npn
39, 43, 53, 65, 147, 154, 169, 175,
181, 188, 195, 204, 224, 247, 257,
271, 283, 300, 311, 318, 325, 334,
343, 350, 357, 364, 373, 382, 390,
393, 399, 404, 407, 438, 449, 455,
481, 485, 497, 500, 501, 505, 508,
509, 513, 527, 549, 570, 654, 746,
846, 870, 877, 884, 893, 897, 900,
903, 915, 940, 1007, 1022, 1087,
1110, 1190, 1207, 1208, 1215, 1309,
1346, 1352, 1411, 1649, 1819, 1868
1880, 1891, 1897, 1900, 1906, 1912
1919, 1925, 1932, 1938, 1942, 1945
\cs_new_protected:Npx 163
\cs_set_eq:NN
. 524, 525, 557, 558, 646, 733, 739,
823, 829, 1360, 1361, 1362, 1363, 1364
\cs_set_protected:Npn
520, 533, 537, 541, 545,
555, 560, 562, 564, 566, 568, 581,
600, 619, 625, 631, 636, 642, 648,
671, 695, 719, 723, 728, 735, 741,
749, 779, 810, 814, 819, 825, 832,
922, 926, 1367, 1457, 1462, 1472,
1511, 1532, 1541, 1580, 1601, 1608,
1692, 1703, 1738, 1760, 1795, 1812

dim commands:
\dim_eval:n 1460, 1516,
1517, 1518, 1527, 1528, 1529, 1585,
1586, 1587, 1596, 1597, 1598, 1695
1743, 1744, 1745, 1751, 1752, 1753
1800, 1801, 1802, 1808, 1809, 1810
\dim_to_decimal_in_sp:n
1241, 1246, 1251

\c_zero_dim
1135, 1136, 1137, 1298, 1299, 1300
\directlua 94, 1539, 1758, 1930

exp commands:
\exp_after:wN
1633, 1681, 1722, 1748, 1779, 1805
\exp_args:Ne . 684, 708, 1388, 1394,
1439, 1445, 1459, 1489, 1494, 1519

1524, 1558, 1563, 1588, 1593, 1694
\exp_args:NNe 848
\exp_not:n 605, 699

783, 1371, 1392, 1443, 1612, 1631, 1679

F
\footins, 935
fp commands:
\fp_evalin
1385, 1406, 1487, 1507, 1556, 1576,
1626, 1645, 1718, 1735, 1775, 1792
G
group commands:
\group_begin: 1882
\group_end: 1887
H

hbox commands:
\hbox:n
\hbox_gset:Nn
\hbox_set:Nn
946, 1028, 1192, 1222, 1256, 1311

hook commands:
\hook_gput_code:nnn . ..
\hook_gput_next_code:nn
\hook_gset_rule:nnnn

1416, 1427, 1654, 1665
1121

139, 476, 1301
1138
470, 471

I

int commands:
\int_compare:nNnTF
969, 1050, 1539, 1758, 1930
\int_compare_p:nNn
1469, 1470, 1700, 1701, 1916, 1917
\int_const:Nn .. 1002, 1082, 1117, 1218
\int_eval:n 1873, 1884

47

\int_gincr:N 207, 583, 602,
673, 697, 751, 755, 781, 785, 1116, 1217

\int_if_exist:NTF 1335
\int_new:N 89, 90, 91
\int_use:N 208, 211,

586, 594, 605, 613, 675, 680, 689,
699, 704, 713, 753, 760, 764, 767,
775, 783, 790, 794, 797, 805, 1010
1016, 1089, 1097, 1187, 1265, 1292
1316, 1327, 1493, 1523, 1562, 1592

K
kernel internal commands:
__kernel_backend_literal:n
31, 80, 584, 588, 603, 607, 621,
633, 650, 660, 1826, 1827, 1833, 1841
__kernel_backend_literal_page:n
28, 674, 698,
721, 730, 743, 752, 782, 812, 821, 834
__kernel_backend_postscript:n .
35, 1258, 1280, 1286, 1313
__kernel_backend_shipout_-
literal:n 39, 39, 529, 644
__kernel_backend_shipout_-
literal_page:n ... 53, 53, 737, 827
__kernel_backend_shipout_-

literal_ pdf:in 43, 43
__kernel_kern:n 1415, 1423,

1426, 1455, 1653, 1661, 1664, 1690
__kernel_pdf_name_from_unicode_-

€IM ... 97, 103

__kernel_pdf_object_id_indexed:nn
1722, 1748, 1779, 1805
__kernel_pdfdict_name:n 226, 227
229, 460, 488, 658, 840, 851, 856,
949, 970, 981, 986, 991, 996, 1031,
1051, 1061, 1066, 1071, 1076, 1225
\g__kernel_pdfmanagement_end_-
run_code_tl 112, 119, 126
\g__kernel_pdfmanagement_-
thispage_shipout_code_tl

135, 141

L

latelua commands:
\latelua:
lua commands:

\lua_load_module:n 933
M
mode commands:
\mode_leave_vertical: . 1140, 1303
N
\NewSocketPlug 934

P

pdf commands:

\pdf_activate_indexed_structure_-

destination: 1345, 1352
\pdf_activate_structure_destination:
.................... 1345, 1346

\1_pdf_current_structure_-
destination_tl 1342,
1388, 1394, 1439, 1445, 1489, 1494,
1519, 1524, 1558, 1563, 1588, 1593
1633, 1681, 1722, 1748, 1779, 1805

\pdf_object_if_exist:nTF

1388, 1439, 1489, 1519, 1558, 1588

\pdf_object_new:n 425, 475

\pdf_object_ref:n
........ 432, 493, 535, 595, 663
681, 690, 761, 776, 842, 983, 988,
993, 998, 1063, 1068, 1073, 1078,
1154, 1161, 1168, 1176, 1394, 1445

\pdf_object_ref_indexed:nn 1633, 1681

\pdf_object_ref_last: .. 873, 880, 887

\pdf_object_unnamed_write:nn ...
....... 627, 725, 816, 872, 879, 886

\pdf_object_write 490

\pdf_object_write:nnn . 462, 479, 1893

pdf internal commands:

__pdf_backend:n
32, 171, 483, 491, 887, 1141, 1149,
1150, 1157, 1164, 1171, 1179, 1194,
1369, 1390, 1418, 1419, 1429, 1441,
1610, 1629, 1656, 1657, 1667, 1677
__pdf_backend_bdc:nn
......... 13, 515, 520, 524, 525,
555, 557, 558, 636, 638, 639, 733, 823
__pdf_backend_bdc_contobj:nn ..
....... 524, 557, 625, 638, 723, 814
__pdf_backend_bdc_contstream:nn
. 525, 558, 631, 728, 733, 819, 823
__pdf_backend_bdc_shipout:nn ..
............... 527, 646, 739, 829
__pdf_backend_bdc_shipout_-
contstream:nn
....... 642, 646, 735, 739, 825, 829
__pdf_backend_bdcobject:n ..
................... 13, 515,
537, 564, 600, 628, 695, 726, 779, 817
__pdf_backend_bdcobject:nn
..... 13, 515, 533, 562, 581, 671, 749
__pdf_backend_bmc:n
..... 13, 515, 545, 568, 619, 719, 810
__pdf_backend_catalog_gput:nn .. 20
__pdf_backend_destination:nn ..
........... 1348, 1354, 1360, 1363

48

__pdf_backend_destination:nnnn
........... 1349, 1355, 1361, 1364
__pdf_backend_emc:
..... 13, 515, 541, 566, 648, 741, 832
__pdf_backend_indexed_structure_-
destination:nn
1354, 1363, 1607, 1608, 1703, 1760
__pdf_backend_indexed_structure_-
destination:nnnn
1355, 1364, 1607, 1692, 1738, 1795
__pdf_backend_indexed_structure_-
destination_aux:nnnn 1649, 1694
__pdf_backend_luastring:n R
158, 242, 251, 263, 264, 275, 290, 291
__pdf_backend_metadata_stream:n
................ 1868, 1880, 1891
\g__pdf_backend_name_int
............ 88, 583, 586, 594,
602, 605, 613, 673, 675, 680, 689,
697, 699, 704, 713, 751, 753, 781, 783
__pdf_backend_Names_gpush:nn ..
........... 870, 877, 884, 893, 897
__pdf_backend_NamesEmbeddedFiles_-
add:nn 899, 900, 903, 915
\g__pdf_backend_object_int .
....... 1116, 1119, 1217, 1220, 1265
__pdf_backend_object_last:
....... 539, 614, 705, 714, 791, 806
__pdf_backend_object_write:nn .
.................... 1874, 1886
__pdf_backend_omit_charset:n ..
........... 1896, 1897, 1900, 1906
__pdf_backend_omit_cidset:n ...
................ 1941, 1942, 1945
__pdf_backend_omit_info:n .
1911, 1912, 1919, 1925, 1932, 1938
__pdf_backend_Page_gput:nn
...... 6, 178, 188, 257, 318, 357, 393
__pdf_backend_Page_gremove:n ..
...... 6, 178, 195, 271, 325, 364, 399
\g__pdf_backend_page_int 88
__pdf_backend_Page_primitive:n
......... 6, 178, 181, 234, 247,
311, 336, 345, 350, 375, 384, 390, 411
__pdf_backend_PageResources:n .
.................. 481, 500, 508
\c__pdf_backend_PageResources_-
clist .. 413,423, 457, 473, 656, 862
__pdf_backend_PageResources_-
gpush:n
..... 13, 515, 549, 570, 654, 746, 846
__pdf_backend_PageResources_-
gpush_aux:n 837, 863

__pdf_backend_PageResources_-
gput:nnn 422, 438, 449, 485, 501, 509
__pdf_backend_PageResources_-
obj_gpush: 422, 455, 497, 505, 513
__pdf_backend_Pages_primitive:n
146, 147, 154, 163, 169, 175
__pdf_backend_pdfmark:n
36, 522, 535, 539, 543, 547, 905
__pdf_backend_record_abspage:n
65, 76, 208, 764, 794
__pdf_backend_ref_abspage:n ...
71, 77,211, 767, 797
\g__pdf_backend_resourceid_int
88, 207, 208, 211, 755, 760,
764, 767, 775, 785, 790, 794, 797, 805
__pdf_backend_set_regression_-
data:
__pdf_backend_shipout_bdc:nn ..
13, 515, 560

__pdf_backend_structure_-
destination:nn
1348, 1360, 1366, 1367, 1472, 1541
__pdf_backend_structure_-
destination:nnnn
1349, 1361, 1366, 1457, 1511, 1580
__pdf_backend_structure_-
destination_aux:nnnn

1411, 1459

__pdf_backend_ThisPage_gpush:n

6, 178, 224, 300, 343, 382, 407

__pdf_backend_ThisPage_gput:nn

6, 178, 204, 283, 334, 373, 404

\g__pdf_backend_thispage_-
shipout_t1l

\1__pdf_backend_tmpa_box

82, 946, 955, 958, 961, 1001,

1036, 1039, 1042, 1081, 1192

1200, 1201, 1202, 1222, 1231,
1234, 1237, 1241, 1246, 1251, 1255
1279, 1311, 1320, 1321, 1322, 1323

\1__pdf_backend_tmpb_box

86, 1256, 1298, 1299, 1300, 1304

\1__pdf_backend_xform_bool

516, 676,
700, 756, 786, 948, 1030, 1123, 1224

__pdf_backend_xform_if_exist:n

1333, 1339

__pdf_backend_xform_new:nnnn ..

939, 940, 1022, 1110, 1207, 1215
__pdf_backend_xform_ref:n ..
.................. 939, 1014,

1096, 1143, 1185, 1196, 1209, 1325
\1__pdf_backend_xform_tmpdp_tl
1213, 1249, 1263, 1270

1028,
1199,

49

\1__pdf_backend_xform_tmpht_tl .
1214, 1244, 1268
\1__pdf_backend_xform_tmpwd_tl .
1212, 1239, 1269
__pdf_backend_xform_use:n
939, 1007, 1087, 1190, 1208, 1309
__pdf_object_retrieve:n . 1873, 1884
\g__pdf_tmpa_prop 82, 226, 231, 236
\1__pdf_tmpa_tl
82, 209, 213, 215, 218, 765,
769, 771, 774, 795, 799, 801, 804, 807
pdfannot internal commands:
__pdfannot_backend_link_begin:n

__pdfannot_backend_link_-
begin:nnnw 1534, 1603, 1814

__pdfannot_backend_link_begin_-
goto:nnw 1350, 1356, 1362

__pdfannot_backend_link_begin_-

structure_goto:nnw 1350, 1356,

1362, 1366, 1462, 1532, 1601, 1812
__pdfannot_backend_link_off: 922
__pdfannot_backend_link_on: 926

pdfdict commands:
\pdfdict_gput:nnn
. 190, 218, 320, 359, 395, 440, 451,
503, 511, 678, 702, 758, 773, 788, 803
\pdfdict_gremove:nn 197, 327, 366, 401

\pdfdict_if_exist:nTF .. 213, 769, 799
\pdfdict_item:nn 236, 842, 857
\pdfdict_new:n 215, 771, 801
\pdfdict_put:nnn 1862
\pdfdict_show:n 807

\pdfdict_use:n 346, 385, 464, 976, 1057

\pdfextension 935
\pdfliteral 2
pdfmanagement commands:
\pdfmanagement_add:nnn 1822, 1825,
1828, 1829, 1832, 1840, 1848, 1853
\pdfnames 20
\pdfomitinfodict 1921
\pdfpageref 3
\pdfrunninglinkoff 920, 924
\pdfrunninglinkon 928
\pdftrailerid 1850

pdfxform commands:
\pdfxform_dp:n
\pdfxform_ht:n
\pdfxform_if_exist:n
\pdfxform_wd:n
prg commands:

1146, 1201, 1322
1145, 1200, 1321
......... 1339
1144, 1199, 1320

\prg_new_conditional:Npnn 1333
\prg_new_eq_conditional:NNn ... 1339
\prg_return_false: 1337

\prg_return_true: 1336
prop commands:

\prop_count:N 970, 1051

\prop_gclear:N 949, 1031, 1225

\prop_gput:Nnn 231, 488

\prop_gset_eq:NN 226

\prop_if_empty:NTF
459, 658, 839, 980,
985, 990, 995, 1060, 1065, 1070, 1075

\prop_if_exist:NTF 227, 850
\prop_map_function:NN 236, 855
\prop_map_inline:Nn 229
\prop_new:N 83
property commands:
\property_record:nn 68
\property_ref:nn 73
\ProvidesExplFile 1
R
\relaxcoiiiiiin.n 132, 1854
S
scan commands:
\scan_stop: 1011,

1093, 1488, 1508, 1518, 1529, 1557
1577, 1587, 1598, 1719, 1736, 1745,
1753, 1776, 1793, 1802, 1810, 1849,
1883, 1902, 1908, 1921, 1934, 1947
\setbox 935
\special, 2

str commands:
\str_case:nnTF
1374, 1395, 1476, 1496, 1545, 1565,

1615, 1634, 1707, 1724, 1764, 1781
\str_convert_pdfname:n 99, 489
\str_if_eq:nnTF 1273, 1284

sys commands:
\c_sys_engine_exec_str 1864
\sys_gset_rand_seed:n 1821

\c_sys_timestamp_str

1828, 1829, 1862

\special
tex commands:
\tex_directlua:D
156, 259, 273, 426, 428, 441, 442
\tex_global:D 149, 183, 848
\tex_immediate:D 963, 1044, 1872, 1884
\tex_latelua:D . 249, 285, 302, 684, 708

\tex_luaescapestring:D 244
\tex_pdfcompresslevel:D 1883
\tex_pdfdest:D 1474, 1491,
1513, 1521, 1705, 1720, 1740, 1746
\tex_pdfextension:D
46, 56, 880, 1543, 1560, 1582
1590, 1762, 1777, 1797, 1803, 1872
\tex_pdflastxform:D 1004, 1084
\tex_pdfliteral:D 49, 59
\tex_pdfnames:D 873
\tex_pdfobj:D 1884
\tex_pdfomitcharset:D 1902
\tex_pdfpageattr:D 183
\tex_pdfpageresources:D 848
\tex_pdfpagesattr:D 149
\tex_pdfrefxform:D 1009, 1089
\tex_pdfsuppressptexinfo:D 1849

\tex_pdftexrevision:D 1470, 1701, 1917
\tex_pdftexversion:D 1469, 1700, 1916
\tex_pdfvariable:D

1854, 1855, 1908, 1934, 1947
\tex_pdfxform:D 963, 1044
\tex_special:D 40, 165, 313, 352

\tex_the:D
.. 955, 958, 961, 1036, 1039, 1042,
1128, 1131, 1134, 1231, 1234, 1237
\tex_unexpanded:D 244

\tex_vss:D . 1421, 1453, 1659, 1688
text commands:
\text_expand:n

tl commands:

\c_space_tl 586, 594, 605, 613, 675
699, 753, 783, 1144, 1145, 1146, 1265
\tl_const:Nn

T .. 953, 956, 959, 1034, 1037, 1040,
TEX and KWTEX 2¢ commands: 1126, 1129, 1132, 1229, 1232, 1235
\@bsphack 67 \tl_gput_right:Nn 110, 117, 124
\@esphack 69 \tl_if_exist:NTF 130
\@kernel@after@enddocument@afterlastpage \tl_new:N 84, 1212, 1213, 1214, 1343
...................... 109, 110 \tl_set:Nn
\@kernel@after@shipout@background 209, 765, 795, 1239, 1244, 1249
...................... 130, 133 \tl to_str:m

\@kernel@after@shipout@lastpage

116, 117, 123, 124
\@kernel@before@shipout@background
132
132, 133

50

954, 957, 960,
1016, 1035, 1038, 1041,
1097, 1118, 1127, 1130,
1219, 1230, 1233, 1236, 1292, 1316,

1327, 1335, 1494, 1524, 1563, 1593

\tl_use:N 1263, 1268, 1269, 1270 \Y%

\VDOX .« i 935
U vbox commands:
\unvbox 935 \vbox_to_zero:n 1413, 1424, 1651, 1662

o1

	1 l3backend-testphase Implementation
	1.1 Variants
	1.2 Support for delayed literal and special
	1.3 Crossreferences
	1.4 luacode
	1.5 Converting unicode strings to a pdfname
	1.6 Hooks
	1.6.1 Add the "end run" hooks
	1.6.2 Add the "shipout" hooks

	1.7 The /Pages dictionary (pdfpagesattr)
	1.8 "Page" and "ThisPage" attributes (pdfpageattr)
	1.9 "Page/Resources": ExtGState, ColorSpace, Shading, Pattern
	1.9.1 Page resources /Properties + BDC operators

	1.10 "Catalog" & subdirectories (pdfcatalog)
	1.10.1 Special case: the /Names/EmbeddedFiles dictionary
	1.10.2 Additional annotation commands
	1.10.3 Split links
	1.10.4 Form XObject / backend

	1.11 Structure Destinations
	1.12 Settings for regression tests
	1.13 Uncompressed metadata object stream
	1.14 Suppressing deprecated PDF features
	1.15 lua code for lualatex

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V

