Ginkgo Generated from branch based on main. Ginkgo version 1.9.0
A numerical linear algebra library targeting many-core architectures
Loading...
Searching...
No Matches
The multigrid-preconditioned-solver program

The preconditioned solver example.

This example depends on preconditioned-solver.

Table of contents
  1. Introduction
  2. The commented program
  1. Results
  2. The plain program

This example shows how to use the multigrid preconditioner.

In this example, we first read in a matrix from a file. The preconditioned CG solver is enhanced with a multigrid preconditioner. The example features the generating time and runtime of the CG solver.

The commented program

{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
static std::shared_ptr< CudaExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_cuda_alloc_mode, CUstream_st *stream=nullptr)
Creates a new CudaExecutor.
static std::shared_ptr< DpcppExecutor > create(int device_id, std::shared_ptr< Executor > master, std::string device_type="all", dpcpp_queue_property property=dpcpp_queue_property::in_order)
Creates a new DpcppExecutor.
static std::shared_ptr< HipExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_hip_alloc_mode, CUstream_st *stream=nullptr)
Creates a new HipExecutor.
static std::shared_ptr< OmpExecutor > create(std::shared_ptr< CpuAllocatorBase > alloc=std::make_shared< CpuAllocator >())
Creates a new OmpExecutor.
Definition executor.hpp:1396

executor where Ginkgo will perform the computation

const auto exec = exec_map.at(executor_string)(); // throws if not valid

Read data

auto A = share(gko::read<mtx>(std::ifstream("data/A.mtx"), exec));
std::unique_ptr< MatrixType > read(StreamType &&is, MatrixArgs &&... args)
Reads a matrix stored in matrix market format from an input stream.
Definition mtx_io.hpp:159

Create RHS as 1 and initial guess as 0

gko::size_type size = A->get_size()[0];
auto host_x = vec::create(exec->get_master(), gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(), gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);
std::size_t size_type
Integral type used for allocation quantities.
Definition types.hpp:89
A type representing the dimensions of a multidimensional object.
Definition dim.hpp:26

Calculate initial residual by overwriting b

auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
std::unique_ptr< Matrix > initialize(size_type stride, std::initializer_list< typename Matrix::value_type > vals, std::shared_ptr< const Executor > exec, TArgs &&... create_args)
Creates and initializes a column-vector.
Definition dense.hpp:1565

copy b again

b->copy_from(host_b);

Create multigrid factory

std::shared_ptr<gko::LinOpFactory> multigrid_gen;
multigrid_gen =
mg::build()
.with_mg_level(pgm::build().with_deterministic(true))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec);
const gko::remove_complex<ValueType> tolerance = 1e-8;
auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(100u),
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance))
.with_preconditioner(multigrid_gen)
.on(exec);
The ResidualNorm class is a stopping criterion which stops the iteration process when the actual resi...
Definition residual_norm.hpp:113
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition math.hpp:260

Create solver

std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();
auto solver = solver_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);

Add logger

std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
solver->add_logger(logger);
static std::unique_ptr< Convergence > create(std::shared_ptr< const Executor >, const mask_type &enabled_events=Logger::criterion_events_mask|Logger::iteration_complete_mask)
Creates a convergence logger.
Definition convergence.hpp:73

Solve system

exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
solver->apply(b, x);
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);

Calculate residual

auto res = gko::as<vec>(logger->get_residual_norm());
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
write(std::cout, res);
std::decay_t< T > * as(U *obj)
Performs polymorphic type conversion.
Definition utils_helper.hpp:307

Print solver statistics

std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}

Results

This is the expected output:

Initial residual norm sqrt(r^T r):
%%MatrixMarket matrix array real general
1 1
4.3589
Final residual norm sqrt(r^T r):
%%MatrixMarket matrix array real general
1 1
1.69858e-09
CG iteration count: 39
CG generation time [ms]: 2.04293
CG execution time [ms]: 22.3874
CG execution time per iteration[ms]: 0.574036

Comments about programming and debugging

The plain program

#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <string>
#include <ginkgo/ginkgo.hpp>
int main(int argc, char* argv[])
{
using ValueType = double;
using IndexType = int;
std::cout << gko::version_info::get() << std::endl;
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptr<gko::Executor>()>>
exec_map{
{"omp", [] { return gko::OmpExecutor::create(); }},
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
0, gko::ReferenceExecutor::create());
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)(); // throws if not valid
auto A = share(gko::read<mtx>(std::ifstream("data/A.mtx"), exec));
gko::size_type size = A->get_size()[0];
auto host_x = vec::create(exec->get_master(), gko::dim<2>(size, 1));
auto host_b = vec::create(exec->get_master(), gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 0.;
host_b->at(i, 0) = 1.;
}
auto x = vec::create(exec);
auto b = vec::create(exec);
x->copy_from(host_x);
b->copy_from(host_b);
auto one = gko::initialize<vec>({1.0}, exec);
auto neg_one = gko::initialize<vec>({-1.0}, exec);
auto initres = gko::initialize<vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
b->copy_from(host_b);
std::shared_ptr<gko::LinOpFactory> multigrid_gen;
multigrid_gen =
mg::build()
.with_mg_level(pgm::build().with_deterministic(true))
.with_criteria(gko::stop::Iteration::build().with_max_iters(1u))
.on(exec);
const gko::remove_complex<ValueType> tolerance = 1e-8;
auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(100u),
.with_baseline(gko::stop::mode::absolute)
.with_reduction_factor(tolerance))
.with_preconditioner(multigrid_gen)
.on(exec);
std::chrono::nanoseconds gen_time(0);
auto gen_tic = std::chrono::steady_clock::now();
auto solver = solver_gen->generate(A);
exec->synchronize();
auto gen_toc = std::chrono::steady_clock::now();
gen_time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(gen_toc - gen_tic);
std::shared_ptr<const gko::log::Convergence<ValueType>> logger =
solver->add_logger(logger);
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
solver->apply(b, x);
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
auto res = gko::as<vec>(logger->get_residual_norm());
std::cout << "Initial residual norm sqrt(r^T r): \n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r): \n";
write(std::cout, res);
std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG generation time [ms]: "
<< static_cast<double>(gen_time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast<double>(time.count()) / 1000000.0 << std::endl;
std::cout << "CG execution time per iteration[ms]: "
<< static_cast<double>(time.count()) / 1000000.0 /
logger->get_num_iterations()
<< std::endl;
}
CSR is a matrix format which stores only the nonzero coefficients by compressing each row of the matr...
Definition sparsity_csr.hpp:21
Dense is a matrix format which explicitly stores all values of the matrix.
Definition sparsity_csr.hpp:25
Parallel graph match (Pgm) is the aggregate method introduced in the paper M.
Definition pgm.hpp:52
CG or the conjugate gradient method is an iterative type Krylov subspace method which is suitable for...
Definition cg.hpp:50
Multigrid methods have a hierarchy of many levels, whose corase level is a subset of the fine level,...
Definition multigrid.hpp:110
static const version_info & get()
Returns an instance of version_info.
Definition version.hpp:139
constexpr T one()
Returns the multiplicative identity for T.
Definition math.hpp:630
void write(StreamType &&os, MatrixPtrType &&matrix, layout_type layout=detail::mtx_io_traits< std::remove_cv_t< detail::pointee< MatrixPtrType > > >::default_layout)
Writes a matrix into an output stream in matrix market format.
Definition mtx_io.hpp:295
detail::shared_type< OwningPointer > share(OwningPointer &&p)
Marks the object pointed to by p as shared.
Definition utils_helper.hpp:224