Ginkgo Generated from branch based on main. Ginkgo version 1.9.0
A numerical linear algebra library targeting many-core architectures
Loading...
Searching...
No Matches
gko::experimental::factorization::Cholesky< ValueType, IndexType >::parameters_type Struct Reference
Inheritance diagram for gko::experimental::factorization::Cholesky< ValueType, IndexType >::parameters_type:
[legend]
Collaboration diagram for gko::experimental::factorization::Cholesky< ValueType, IndexType >::parameters_type:
[legend]

Public Member Functions

template<typename... Args>
auto with_symbolic_factorization (Args &&... _value) -> std::decay_t< decltype(*(this->self()))> &
 
template<typename... Args>
auto with_skip_sorting (Args &&... _value) -> std::decay_t< decltype(*(this->self()))> &
 
- Public Member Functions inherited from gko::enable_parameters_type< parameters_type, Cholesky >
parameters_type & with_loggers (Args &&... _value)
 Provides the loggers to be added to the factory and its generated objects in a fluent interface.
 
std::unique_ptr< Cholesky > on (std::shared_ptr< const Executor > exec) const
 Creates a new factory on the specified executor.
 

Public Attributes

std::shared_ptr< const sparsity_pattern_typesymbolic_factorization {nullptr}
 The combined sparsity pattern L + L^H of the factors L and L^H.
 
bool skip_sorting {false}
 The system_matrix, which will be given to this factory, must be sorted (first by row, then by column) in order for the algorithm to work.
 

Additional Inherited Members

- Public Types inherited from gko::enable_parameters_type< parameters_type, Cholesky >
using factory
 

Member Data Documentation

◆ skip_sorting

template<typename ValueType , typename IndexType >
bool gko::experimental::factorization::Cholesky< ValueType, IndexType >::parameters_type::skip_sorting {false}

The system_matrix, which will be given to this factory, must be sorted (first by row, then by column) in order for the algorithm to work.

If it is known that the matrix will be sorted, this parameter can be set to true to skip the sorting (therefore, shortening the runtime). However, if it is unknown or if the matrix is known to be not sorted, it must remain false, otherwise, the algorithm may produce incorrect results or crash.

◆ symbolic_factorization

template<typename ValueType , typename IndexType >
std::shared_ptr<const sparsity_pattern_type> gko::experimental::factorization::Cholesky< ValueType, IndexType >::parameters_type::symbolic_factorization {nullptr}

The combined sparsity pattern L + L^H of the factors L and L^H.

It can be used to avoid the potentially costly symbolic factorization of the system matrix if its symbolic factorization is already known. If it is set to nullptr, the symbolic factorization will be computed.


The documentation for this struct was generated from the following file: